分析 (1)連接OD,根據(jù)切線的性質(zhì)可得OD⊥BC,即得∠ODB=∠C=90°,則可得OD∥AC,根據(jù)平行線的性質(zhì)可得∠ODA=∠CAD,根據(jù)圓的基本性質(zhì)可得∠ODA=∠OAD,問題得證;
(2)過O作OH⊥AC于H,根據(jù)垂徑定理可得,由OD∥AC,OH⊥AC,∠C=90°可求得OH=DC=$\sqrt{2}$,在RtAOH中,根據(jù)勾股定理即可求得結(jié)果.
解答 (1)證明:
如圖1,連接OD,
∵BC為切線,
∴OD⊥BC,即∠ODB=90°,
∵∠C=90°,
∴∠C=∠ODB,
∴OD∥AC,
∴∠ODA=∠DAC,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠OAD=∠DAC,
即AD平分∠BAC;
(2)解:
如圖2,過O作OH⊥AC于H,
則AH=$\frac{1}{2}$AE=1,
結(jié)合(1)可知四邊形OHCD為矩形,
∴OH=CD=$\sqrt{2}$,
在Rt△AOH中,由勾股定理可得OA=$\sqrt{A{H}^{2}+H{O}^{2}}$=$\sqrt{{1}^{2}+(\sqrt{2})^{2}}$=$\sqrt{3}$,
即圓弧的半徑為$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了切線性質(zhì),勾股定理,等腰三角形性質(zhì),平行線的性質(zhì)和判定等知識(shí)點(diǎn),主要考查學(xué)生綜合運(yùn)用性質(zhì)進(jìn)行推理的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{5x+3y=50+2}\\{11x+5y=90×0.9}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{5x+3y=50+2}\\{11x+5y=90÷0.9}\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}{5x+3y=50-2}\\{11x+5y=90×0.9}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{5x+3y=50-2}\\{11x+5y=90÷0.9}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com