【題目】如圖在下面平面直角坐標(biāo)系中,已知A ,B ,C 三點.其中滿足.
(1)求的值;
(2)如果在第二象限內(nèi)有一點 ,請用含的式子表示四邊形的面積;
(3)在(2)的條件下,是否存在點,使四邊形的面積為△的面積的兩倍?若存在,求出點的坐標(biāo),若不存在,請說明理由.
【答案】(1)a=2,b=3,c=4;(2)四邊形ABOP的面積為3-m;(3)存在,點P坐標(biāo)為
【解析】分析:(1)根據(jù)幾個非負數(shù)和的性質(zhì)得到a-2=0,b-3=0,c-4=0,分別解一元一次方程得到a=2,b=3,b=4;
(2)根據(jù)三角形的面積公式和四邊形ABOP的面積=S△AOP+S△AOB進行計算;
(3)若S四邊形ABOP≥S△AOP,則-m+3≥2××2×(-m),解得m≥-3,則m=-1,-2,-3,然后分別寫出P點的坐標(biāo).
詳解:(1)∵|a-2|+(b-3)2+=0,
∴a-2=0,b-3=0,c-4=0,
∴a=2,b=3,b=4;
(2)A點坐標(biāo)為(0,2),B點坐標(biāo)為(3,0),
四邊形ABOP的面積=S△AOP+S△AOB
=×2×(-m)+×2×3
=-m+3;
(3)存在.理由如下:
∵S四邊形ABOP≥S△AOP,
∴-m+3≥2××2×(-m),
∴m≥-3,
∵m為負整數(shù),
∴m=-1,-2,-3,
∴點P的坐標(biāo)為(-1,)或(-2,)或(-3,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料后解決問題:
小明遇到下面一個問題:
計算(2+1)(22+1)(24+1)(28+1).
經(jīng)過觀察,小明發(fā)現(xiàn)如果將原式進行適當(dāng)?shù)淖冃魏罂梢猿霈F(xiàn)特殊的結(jié)構(gòu),進而可以應(yīng)用平方差公式解決問題,具體解法如下:(2+1)(22+1)(24+1)(28+1)
=(2+1)(2﹣1)(22+1)(24+1)(28+1)
=(22﹣1)(22+1)(24+1)(28+1)
=(24﹣1)(24+1)(28+1)
=(28﹣1)(28+1)
=216﹣1
請你根據(jù)小明解決問題的方法,試著解決以下的問題:
(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____.
(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____.
(3)化簡:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AE⊥BC于點E,∠BAE=30°,AD=4cm.
(1)求菱形ABCD的各角的度數(shù);
(2)求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲分為三等分數(shù)字轉(zhuǎn)盤,乙為四等分數(shù)字轉(zhuǎn)盤,自由轉(zhuǎn)動轉(zhuǎn)盤.
(1)轉(zhuǎn)動甲轉(zhuǎn)盤,指針指向的數(shù)字小于3的概率是 ;
(2)同時自由轉(zhuǎn)動兩個轉(zhuǎn)盤,用列舉的方法求兩個轉(zhuǎn)盤指針指向的數(shù)字均為奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓C過原點并與坐標(biāo)軸分別交于A、D兩點,已知點B為圓C圓周上一動點,且∠ABO=30°,點D的坐標(biāo)為(0,2).
(1)直接寫出圓心 C 的坐標(biāo);
(2)當(dāng)△BOD為等邊三角形時,求點B的坐標(biāo);
(3)若以點B為圓心、r為半徑作圓B,當(dāng)圓B與兩個坐標(biāo)軸同時相切時,求點B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a<0,c>0)與x軸交于點A、B,與y軸交于點C,且以AB為直徑的圓經(jīng)過點C.
(1)若點A(﹣2,0),點B(8,0),求ac的值;
(2)若點A(x1,0),B(x2,0),試探索ac是否為定值?若是,求出這個定值;若不是,請說明理由.
(3)若點D是圓與拋物線的交點(D與 A、B、C 不重合),在(1)的條件下,坐標(biāo)軸上是否存在一點P,使得以P、B、C為頂點的三角形與△CBD相似?若存在,請直接寫出點P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1∥l2,點A、D在l1上,AB⊥l1,CD⊥l2,垂足分別是B、C,點E,F在l2上,AE∥DF,那么AE與DF、BE與CF相等嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像交軸于點,交軸于點.以為圓心的⊙與軸相切,若點以每秒個單位的速度沿軸向右平移,同時⊙的半徑以每秒增加個單位的速度不斷變大,設(shè)運動時間為.
()點的坐標(biāo)為__________,點的坐標(biāo)為__________,__________.
()在運動過程中,點的坐標(biāo)為__________,⊙的半徑為__________(用含的代數(shù)式表示).
()當(dāng)⊙與直線相交于點、時.
①如圖,求時弦的長.
②在運動過程中,是否存在以點為直角頂點的,若存在,請求出的值;若不存在,請說明理由(利用圖解題).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O為直線AB上一點,過點O向直線AB上方引三條射線OC、OD、OE,且OC平分∠AOD,∠2=3∠1.
(1)若∠1=18°,求∠COE的度數(shù);
(2)若∠COE=70°,求∠2的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com