15.下列各數(shù)中,0.$\stackrel{.}{2}$$\stackrel{.}{3}$,3.1415926,-$\root{3}{8}$,0.131131113…,-π,$\sqrt{25}$,-$\frac{1}{7}$,無理數(shù)的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時(shí)理解有理數(shù)的概念,有理數(shù)是整數(shù)與分?jǐn)?shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項(xiàng)

解答 解:0.131131113…,-π是無理數(shù),
故選:B.

點(diǎn)評 此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示,下列條件中,不能得到l1∥l2的是( 。
A.∠4=∠5B.∠1=∠3C.∠2=∠3D.∠2+∠4=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖示,雙曲線y=$\frac{{k}_{1}}{x}$與直線y=k2x交于A(-1,m)、B(n,-2)兩點(diǎn)
(1)求雙曲線y=$\frac{{k}_{1}}{x}$與直線y=k2x的表達(dá)式;
(2)當(dāng)雙曲線y=$\frac{{k}_{1}}{x}$的函數(shù)值為-3<y<-1時(shí),請直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.先化簡,再求值:
已知a是方程x2+x-1=0的實(shí)根,求代數(shù)式(a+2)2-3(a-1)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.方程x2-2x-a=0的一個(gè)根是-1,則a=3,另一個(gè)根是3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:$\sqrt{3}$,AB=8米,AE=10米.(i=1:$\sqrt{3}$是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測角器的高度忽略不計(jì),結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.已知△ABC中,AB=6,AC=BC=5,將△ABC折疊,使點(diǎn)A落在BC邊上的點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AB、AC上).
(1)當(dāng)ED⊥BC時(shí),BE的長為$\frac{30}{9}$;
(2)當(dāng)以B、E、D為頂點(diǎn)的三角形與△DEF相似時(shí),BE的長為3或$\frac{14+16\sqrt{3}}{13}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.為了推動(dòng)課堂教學(xué)改革,打造“貴生課堂”,我縣某中學(xué)對該校八年級(jí)部分學(xué)生就一學(xué)期以來“分組合作學(xué)習(xí)”方式的支持程度進(jìn)行調(diào)查,統(tǒng)計(jì)情況如圖,請根據(jù)圖中提供的信息,回答下列問題:
(1)本次調(diào)查的八年級(jí)部分學(xué)生共有54名;請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校八年級(jí)學(xué)生共有540人,請你估計(jì)該校八年級(jí)有多少名學(xué)生支持“分組合作學(xué)習(xí)”方式(含“非常喜歡”和“喜歡”兩種情況的學(xué)生)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,BD是⊙O的直徑,點(diǎn)A、C在⊙O上,過點(diǎn)A作⊙O的切線AE交CD的延長線于點(diǎn)E,且DA平分∠BDE.
(1)求證:AE⊥CD;
(2)若⊙O的半徑為1cm,∠EAD=30°,求圖中陰影部分的面積;
(3)第(2)問中的解題過程,用到的數(shù)學(xué)思想是轉(zhuǎn)化的思想.

查看答案和解析>>

同步練習(xí)冊答案