【題目】如圖1,是用量角器一個(gè)角的操作示意圖,量角器的讀數(shù)從M點(diǎn)開(kāi)始(即M點(diǎn)的讀數(shù)為0),如圖2,把這個(gè)量角器與一塊30°(∠CAB=30°)角的三角板拼在一起,三角板的斜邊AB與量角器所在圓的直徑MN重合,現(xiàn)有射線C繞點(diǎn)C從CA開(kāi)始沿順時(shí)針?lè)较蛞悦棵?/span>2°的速度旋轉(zhuǎn)到與CB,在旋轉(zhuǎn)過(guò)程中,射線CP與量角器的半圓弧交于E.連接BE.
(1)當(dāng)射線CP經(jīng)過(guò)AB的中點(diǎn)時(shí),點(diǎn)E處的讀數(shù)是 ,此時(shí)△BCE的形狀是 ;
(2)設(shè)旋轉(zhuǎn)x秒后,點(diǎn)E處的讀數(shù)為y,求y與x的函數(shù)關(guān)系式;
(3)當(dāng)CP旋轉(zhuǎn)多少秒時(shí),△BCE是等腰三角形?
【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒
【解析】
(1)根據(jù)圓周角定理即可解決問(wèn)題;
(2)如圖2﹣2中,由題意∠ACE=2x,∠AOE=y,根據(jù)圓周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);
(3)分兩種情形分別討論求解即可;
解:(1)如圖2﹣1中,
∵∠ACB=90°,OA=OB,
∴OA=OB=OC,
∴∠OCA=∠OAC=30°,
∴∠AOE=60°,
∴點(diǎn)E處的讀數(shù)是60°,
∵∠E=∠BAC=30°,OE=OB,
∴∠OBE=∠E=30°,
∴∠EBC=∠OBE+∠ABC=90°,
∴△EBC是直角三角形;
故答案為60°,直角三角形;
(2)如圖2﹣2中,
∵∠ACE=2x,∠AOE=y,
∵∠AOE=2∠ACE,
∴y=4x(0≤x≤45).
(3)①如圖2﹣3中,當(dāng)EB=EC時(shí),EO垂直平分線段BC,
∵AC⊥BC,
∵EO∥AC,
∴∠AOE=∠BAC=30°,
∴∠ECA=∠AOE=15°,
∴x=7.5.
②若2﹣4中,當(dāng)BE=BC時(shí),
易知∠BEC=∠BAC=∠BCE=30°,
∴∠OBE=∠OBC=60°,
∵OE=OB,
∴△OBE是等邊三角形,
∴∠BOE=60°,
∴∠AOB=120°,
∴∠ACE=∠ACB=60°,
∴x=30,
綜上所述,當(dāng)CP旋轉(zhuǎn)7.5秒或30秒時(shí),△BCE是等腰三角形;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們將如圖所示的兩種排列形式的點(diǎn)的個(gè)數(shù)分別稱作“三角形數(shù)”(如1,3,6,10…)和“正方形數(shù)”(如1,4,9,16…),在小于200的數(shù)中,設(shè)最大的“三角形數(shù)”為m,最大的“正方形數(shù)”為n,則m+n的值為( 。
A. 33 B. 301 C. 386 D. 571
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=(x<0)的圖象過(guò)格點(diǎn)(網(wǎng)格線的交點(diǎn))P.
(1)求反比例函數(shù)的解析式;
(2)在圖中用直尺和2B鉛筆畫(huà)出兩個(gè)三角形(不寫(xiě)畫(huà)法),要求每個(gè)三角形均需滿足下列兩個(gè)條件:
①三個(gè)頂點(diǎn)均在格點(diǎn)上,且其中兩個(gè)頂點(diǎn)分別是點(diǎn)O,點(diǎn)P;
②三角形的面積等于|k|的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線ybx+c,經(jīng)過(guò)點(diǎn)A(1,3)、B(0,1),過(guò)點(diǎn)A作x軸的平行線交拋物線于另一點(diǎn)C
(1)求拋物線的表達(dá)式及其頂點(diǎn)坐標(biāo);
(2)如圖1,點(diǎn)G是BC上方拋物線上的一個(gè)動(dòng)點(diǎn),分別過(guò)點(diǎn)G作GH⊥BC于點(diǎn)H、作GE⊥x軸于點(diǎn)E,交BC于點(diǎn)F,在點(diǎn)G運(yùn)動(dòng)的過(guò)程中,△GFH的周長(zhǎng)是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,過(guò)A點(diǎn)的直線垂直x軸于點(diǎn)M,點(diǎn)N為直線AM上任意一點(diǎn),當(dāng)△BCN為直角三角形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在直線AB上,連接CD,并把CD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°到CE.
(1)如圖1,點(diǎn)D在AB邊上,線段BD、BE、CD的數(shù)量關(guān)系為 .
(2)如圖2,點(diǎn)D在點(diǎn)B右側(cè),請(qǐng)猜想線段BD、BE、CD的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)如圖3,點(diǎn)D在點(diǎn)A左側(cè),BC=,AD=BE=1,請(qǐng)直接寫(xiě)出線段EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,4),B(3,4),P 為線段 OA 上一動(dòng)點(diǎn),過(guò) O,P,B 三點(diǎn)的圓交 x 軸正半軸于點(diǎn) C,連結(jié) AB, PC,BC,設(shè) OP=m.
(1)求證:當(dāng) P 與 A 重合時(shí),四邊形 POCB 是矩形.
(2)連結(jié) PB,求 tan∠BPC 的值.
(3)記該圓的圓心為 M,連結(jié) OM,BM,當(dāng)四邊形 POMB 中有一組對(duì)邊平行時(shí),求所有滿足條件的 m 的值.
(4)作點(diǎn) O 關(guān)于 PC 的對(duì)稱點(diǎn)O ,在點(diǎn) P 的整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)O 落在△APB 的內(nèi)部 (含邊界)時(shí),請(qǐng)寫(xiě)出 m 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(12,0),O為坐標(biāo)原點(diǎn),P是線段OA上任一點(diǎn)(不含端點(diǎn)O、A),二次函數(shù)y1的圖象過(guò)P、O兩點(diǎn),二次函數(shù)y2的圖象過(guò)P、A兩點(diǎn),它們的開(kāi)口均向下,頂點(diǎn)分別為B、C,射線OB與射線AC相交于點(diǎn)D.則當(dāng)OD=AD=9時(shí),這兩個(gè)二次函數(shù)的最大值之和等于( 。
A. 8 B. 3 C. 2 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:兩條長(zhǎng)度相等,且它們所在的直線互相垂直,我們稱這兩條線段互為等垂線段.如圖①,直線y=2x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn) B.
(1)若線段AB與線段BC互為等垂線段.求A、B、C的坐標(biāo).
(2)如圖②,點(diǎn)D是反比例函數(shù)y=﹣的圖象上任意一點(diǎn),點(diǎn)E(m,1),線段DE與線段AB互為等垂線段,求m的值;
(3)拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A、B兩點(diǎn).
①用含a的代數(shù)式表示b.
②點(diǎn)P為平面直角坐標(biāo)系內(nèi)的一點(diǎn),在拋物線上存在點(diǎn)Q,使得線段PQ與線段AB互為等垂線段,且它們互相平分,請(qǐng)直接寫(xiě)出滿足上述條件的a值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙M經(jīng)過(guò)原點(diǎn)O(0,0),點(diǎn)A(,0)與點(diǎn)B(0,-),點(diǎn)D在劣弧上,連結(jié)BD交x軸于點(diǎn)C,且∠COD=∠CBO.
(1)求⊙M的半徑;
(2)求證:BD平分∠ABO;
(3)在線段BD的延長(zhǎng)線上找一點(diǎn)E,使得直線AE恰為⊙M的切線,求此時(shí)點(diǎn)E的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com