【題目】某水果店在兩周內(nèi),將標價為10元/斤的某種水果,經(jīng)過兩次降價后的價格為8.1元/斤,并且兩次降價的百分率相同.
(1)求該種水果每次降價的百分率;
(2)從第一次降價的第1天算起,第x天(x為整數(shù))的售價、銷量及儲存和損耗費用的相關(guān)信息如表所示.已知該種水果的進價為4.1元/斤,設(shè)銷售該水果第x(天)的利潤為y(元),求y與x(1≤x<15)之間的函數(shù)關(guān)系式,并求出第幾天時銷售利潤最大?
(3)在(2)的條件下,若要使第15天的利潤比(2)中最大利潤最多少127.5元,則第15天在第14天的價格基礎(chǔ)上最多可降多少元?
【答案】(1)10%;(2),第10天時銷售利潤最大;(3)0.5.
【解析】試題分析:(1)設(shè)這個百分率是x,根據(jù)某商品原價為10元,由于各種原因連續(xù)兩次降價,降價后的價格為8.1元,可列方程求解;
(2)根據(jù)兩個取值先計算:當1≤x<9時和9≤x<15時銷售單價,由利潤=(售價﹣進價)×銷量﹣費用列函數(shù)關(guān)系式,并根據(jù)增減性求最大值,作對比;
(3)設(shè)第15天在第14天的價格基礎(chǔ)上最多可降a元,根據(jù)第15天的利潤比(2)中最大利潤最多少127.5元,列不等式可得結(jié)論.
試題解析:解:(1)設(shè)該種水果每次降價的百分率是x,10(1﹣x)2=8.1,x=10%或x=190%(舍去).
答:該種水果每次降價的百分率是10%;
(2)當1≤x<9時,第1次降價后的價格:10×(1﹣10%)=9,∴y=(9﹣4.1)(80﹣3x)﹣(40+3x)=﹣17.7x+352,∵﹣17.7<0,∴y隨x的增大而減小,∴當x=1時,y有最大值,y大=﹣17.7×1+352=334.3(元);
當9≤x<15時,第2次降價后的價格:8.1元,∴y=(8.1﹣4.1)(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,∵﹣3<0,∴當9≤x≤10時,y隨x的增大而增大,當10<x<15時,y隨x的增大而減小,∴當x=10時,y有最大值,y大=380(元).
綜上所述,y與x(1≤x<15)之間的函數(shù)關(guān)系式為: ,第10天時銷售利潤最大;
(3)設(shè)第15天在第14天的價格基礎(chǔ)上最多可降a元,由題意得:380﹣127.5≤(4﹣a)(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a)﹣115,a≤0.5.
答:第15天在第14天的價格基礎(chǔ)上最多可降0.5元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P的坐標為(a﹣1,5﹣2a),且它到兩個坐標軸的距離相等,則點P的坐標為( )
A.(3,3)B.(3,﹣3)C.(1,﹣1)D.(1,1)或(3,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在如圖所示的平面直角坐標系中表示下面各點:A(0,3);B(5,0);C(3,-5);D(-3,-5);E(3,5);
(2)連接CE,則直線CE與y軸是什么位置關(guān)系?
(3)點D分別到x、y軸的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,我們定義直線y=ax﹣a為拋物線(a、b、c為常數(shù),a≠0)的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.
已知拋物線與其“夢想直線”交于A、B兩點(點A在點B的左側(cè)),與x軸負半軸交于點C.
(1)填空:該拋物線的“夢想直線”的解析式為 ,點A的坐標為 ,點B的坐標為 ;
(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“夢想三角形”,求點N的坐標;
(3)當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)對平面圖形進行了自主探究:圖形的頂點數(shù) V,被分成的區(qū)域數(shù) F,線段數(shù) E 三者之間是否存在確定的數(shù)量關(guān)系.如圖是他在探究時畫出的 5 個圖形:
(1)根據(jù)上圖完成下表:
(2)猜想:一個平面圖形中頂點數(shù) V,區(qū)域數(shù) F,線段數(shù) E 之間的數(shù)量關(guān)系是 ;
(3)計算:已知一個平面圖形有 24 條線段,被分成 9 個區(qū)域,則這個平面圖形的頂點有 個;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別是可活動的菱形和平行四邊形學(xué)具,已知平行四邊形較短的邊與菱形的邊長相等.
(1)在一次數(shù)學(xué)活動中,某小組學(xué)生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經(jīng)過點C,連接DE交AF于點M,觀察發(fā)現(xiàn):點M是DE的中點.
下面是兩位學(xué)生有代表性的證明思路:
思路1:不需作輔助線,直接證三角形全等;
思路2:不證三角形全等,連接BD交AF于點H.…
請參考上面的思路,證明點M是DE的中點(只需用一種方法證明);
(2)如圖2,在(1)的前提下,當∠ABE=135°時,延長AD、EF交于點N,求的值;
(3)在(2)的條件下,若=k(k為大于的常數(shù)),直接用含k的代數(shù)式表示的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com