【題目】在信息快速發(fā)展的社會(huì),“信息消費(fèi)”已成為人們生活的重要組成部分.某高校組織課外小組在鄭州市的一個(gè)社區(qū)隨機(jī)抽取部分家庭,調(diào)查每月用于信息消費(fèi)的金額,根據(jù)數(shù)據(jù)整理成如圖所示的不完整統(tǒng)計(jì)表和統(tǒng)計(jì)圖.已知A,B兩組戶數(shù)頻數(shù)直方圖的高度比為1:5. 月信息消費(fèi)額分組統(tǒng)計(jì)表

組別

消費(fèi)額(元)

A

10≤x<100

B

100≤x<200

C

20≤x<300

D

300≤x<400

E

x≥400

請(qǐng)結(jié)合圖表中相關(guān)數(shù)據(jù)解答下列問題:

(1)這次接受調(diào)查的有戶;
(2)在扇形統(tǒng)計(jì)圖中,“E”所對(duì)應(yīng)的圓心角的度數(shù)是;
(3)請(qǐng)你補(bǔ)全頻數(shù)直方圖;
(4)若該社區(qū)有2000戶住戶,請(qǐng)估計(jì)月信息消費(fèi)額不少于200元的戶數(shù)是多少?

【答案】
(1)50
(2)28.8°
(3)解:C組的頻數(shù)是:50×40%=20,如圖,


(4)解:2000×(28%+8%+40%)=1520(戶),

答:估計(jì)月信息消費(fèi)額不少于200元的約有1520戶.


【解析】解:(1)A組的頻數(shù)是:10× =2; ∴這次接受調(diào)查的有(2+10)÷(1﹣8%﹣28%﹣40%)=50(戶),
故答案為:50;(2)“E”所對(duì)應(yīng)的圓心角的度數(shù)是360°×8%=28.8°,
故答案為:28.8°;
(1)根據(jù)A、B兩組戶數(shù)直方圖的高度比為1:5,即兩組的頻數(shù)的比是1:5,據(jù)此即可求得A組的頻數(shù);利用A和B兩組的頻數(shù)的和除以兩組所占的百分比即可求得總數(shù);(2)用“E”組百分比乘以360°可得;(3)利用總數(shù)乘以百分比即可求得C組的頻數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(4)利用總數(shù)2000乘以C、D、E的百分比即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O為等腰△ABC的外接圓,直徑AB=12,P為弧 上任意一點(diǎn)(不與B,C重合),直線CP交AB延長(zhǎng)線于點(diǎn)Q,⊙O在點(diǎn)P處切線PD交BQ于點(diǎn)D,下列結(jié)論正確的是 . (寫出所有正確結(jié)論的序號(hào)) ①若∠PAB=30°,則弧 的長(zhǎng)為π;②若PD∥BC,則AP平分∠CAB;
③若PB=BD,則PD=6 ;④無論點(diǎn)P在弧 上的位置如何變化,CPCQ為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣ x+2與拋物線y=a (x+2)2相交于A、B兩點(diǎn),點(diǎn)A在y軸上,M為拋物線的頂點(diǎn).

(1)請(qǐng)直接寫出點(diǎn)A的坐標(biāo)及該拋物線的解析式;
(2)若P為線段AB上一個(gè)動(dòng)點(diǎn)(A、B兩端點(diǎn)除外),連接PM,設(shè)線段PM的長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x,請(qǐng)求出l2與x之間的函數(shù)關(guān)系,并直接寫出自變量x的取值范圍;
(3)在(2)的條件下,線段AB上是否存在點(diǎn)P,使以A、M、P為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某射擊隊(duì)要從甲、乙、丙、丁四人中選拔一名選手參賽,在選拔賽中,每人射擊10次,然后從他們的成績(jī)平均數(shù)(環(huán))及方差兩個(gè)因素進(jìn)行分析,甲、乙、丙的成績(jī)分析如表所示,丁的成績(jī)?nèi)鐖D所示.

平均數(shù)

7.9

7.9

8.0

方差

3.29

0.49

1.8

根據(jù)以上圖表信息,參賽選手應(yīng)選(

A.甲
B.乙
C.丙
D.丁

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程ax2﹣(a+2)x+2=0有兩個(gè)不相等的正整數(shù)根時(shí),整數(shù)a的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列要求,解答相關(guān)問題:
(1)請(qǐng)補(bǔ)全以下求不等式﹣2x2﹣4x≥0的解集的過程 ①構(gòu)造函數(shù),畫出圖象:
根據(jù)不等式特征構(gòu)造二次函數(shù)y=﹣2x2﹣4x;拋物線的對(duì)稱軸x=﹣1,開口向下,頂點(diǎn)(﹣1,2)與x軸的交點(diǎn)是(0,0),(﹣2,0),用三點(diǎn)法畫出二次函數(shù)y=﹣2x2﹣4x的圖象如圖1所示;
②數(shù)形結(jié)合,求得界點(diǎn):
當(dāng)y=0時(shí),求得方程﹣2x2﹣4x=0的解為
③借助圖象,寫出解集:
由圖象可得不等式﹣2x2﹣4x≥0的解集為
(2)利用(1)中求不等式解集的方法步驟,求不等式x2﹣2x+1<4的解集. ①構(gòu)造函數(shù),畫出圖象;
②數(shù)形結(jié)合,求得界點(diǎn);
③借助圖象,寫出解集.
(3)參照以上兩個(gè)求不等式解集的過程,借助一元二次方程的求根公式,直接寫出關(guān)于x的不等式ax2+bx+c>0(a>0)的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算: +|1﹣ |+ +( 1﹣20170

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊△ABC,M是邊BC延長(zhǎng)線上一點(diǎn),連接AM交△ABC的外接圓于點(diǎn)D,延長(zhǎng)BD至N,使得BN=AM,連接CN,MN,解答下列問題:
(1)猜想△CMN的形狀,并證明你的結(jié)論;
(2)請(qǐng)你證明CN是⊙O的切線;
(3)若等邊△ABC的邊長(zhǎng)是2,求ADAM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中有一Rt△AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線l:y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).

(1)求拋物線l的解析式及頂點(diǎn)G的坐標(biāo).
(2)①求證:拋物線l經(jīng)過點(diǎn)C.
②分別連接CG,DG,求△GCD的面積.
(3)在第二象限內(nèi),拋物線上存在異于點(diǎn)G的一點(diǎn)P,使△PCD與△CDG的面積相等,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案