如圖,已知:AB,CD交于點O,CA=CO,BO=BD,點Q是BC的中點,點E,F分別是OA,OD的中點,連接QE,QF,試探討QE,QF的大小關系,并說明理由

  

 

 

【答案】

QE=QF,證明見解析.

【解析】

試題分析:直觀上看兩條線段相等,線段相等一般用三角形的全等證明,但是本題中無法找到全等的三角形,所以選擇其他方法,里面有等腰三角形,又有底邊上的中點,考慮作中線,于是可以得到直角三角形,而線段BC是兩個直角三角形的公共斜邊,從而找到兩條線段之間的關系,由題,如圖, 連接EC,FA,∵AC=CO,E為AO的中點,∴CE⊥AB,∴∠BEC=90°,在Rt△BEC中,EQ=BC,同理可證FQ=BC,∴QE=QF.

試題解析:如圖,連接EC,FA,

∵AC=CO,E為AO的中點,

∴CE⊥AB,

∴∠BEC=90°,

在Rt△BEC中,EQ=BC,

同理可證FQ=BC,

∴QE=QF.

考點:斜邊上的中線等于斜邊的一半.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

13、如圖,已知直線AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,則∠C的度數(shù)為
120

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,已知線段AB=6,延長線段AB到C,使BC=2AB,點D是AC的中點,則AC的長為
18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•溫州一模)如圖,已知線段AB,
(1)線段AB為腰作一個黃金三角形(尺規(guī)作圖,要求保留作圖痕跡,不必寫出作法);
(友情提示:三角形兩邊之比為黃金比的等腰三角形叫做黃金三角形)
(2)若AB=2,求出你所作的黃金三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖①,已知弧AB,用尺規(guī)作圖,作出弧AB的圓心P;
(2)如圖②,若弧AB半徑PA為18,圓心角為120°,半徑為2的⊙O,從弧AB的一個端點A(切點)開始先在外側(cè)滾動到另一個端點B(切點),再旋轉(zhuǎn)到內(nèi)側(cè)繼續(xù)滾動,最后轉(zhuǎn)回到初始位置,⊙O自轉(zhuǎn)多少周?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知線段AB、CD分別表示甲、乙兩幢樓的高,AB⊥BD,CD⊥BD,從甲樓頂部A處測得乙樓頂部C的仰角α=30°,測得乙樓底部D的俯角β=60°,已知甲樓高AB=24m,求乙樓CD的高.

查看答案和解析>>

同步練習冊答案