【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點.

(1)已知點M,N是線段AB的勾股分割點,若AM=3,MN=4求BN的長;

(2)已知點C是線段AB上的一定點,其位置如圖2所示,請在BC上畫一點D,使C,D是線段AB的勾股分割點(要求尺規(guī)作圖,保留作圖痕跡,畫出一種情形即可);

(3)如圖3,正方形ABCD中,M,N分別在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分別交BD于E,F(xiàn).

求證:E、F是線段BD的勾股分割點;

②△AMN的面積是AEF面積的兩倍.

【答案】1BN=5;(2)圖形見解析;3①證明見解析,②證明見解析.

【解析】試題分析:(1)①當MN為最大線段時,由勾股定理求出BN;由BN為最大線段時,由勾股定理求出BN即可;

(2)①在AB上截取CE=CA,②作AE的垂直平分線,并截取CF=CA,③連接BF,并作BF的垂直平分線,交AB于D;

(3)①如圖3,將△ADF繞點A順時針旋轉90°得到△ABH,連接HE,只要證明△EAH≌△EAF,推出EF=HE,再證明∠HBE=90°即可;

②如圖,連接FM,EN,證明△AEN和△AFM是等腰直角三角形,推出AM、AN,根據(jù)三角形的面積和銳角三角函數(shù)求解即可.

試題解析:(1)解:(1)①當MN為最大線段時,

∵點M,N是線段AB的勾股分割點,

∴BM===,

②當BN為最大線段時,

∵點M,N是線段AB的勾股分割點,

∴BN===5,

綜上,BN=或5;

(2)作法:①在AB上截取CE=CA;

②作AE的垂直平分線,并截取CF=CA;

③連接BF,并作BF的垂直平分線,交AB于D;

點D即為所求;如圖2所示.

(3)①如圖3中,將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.

∵∠DAF+∠BAE=90°﹣∠EAF=45°,∠DAF=∠BAH,

∴∠EAH=∠EAF=45°,

∵EA=EA,AH=AF,

∴△EAH≌△EAF,

∴EF=HE,

∵∠ABH=∠ADF=45°=∠ABD,

∴∠HBE=90°,

在Rt△BHE中,HE2=BH2+BE2,

∵BH=DF,EF=HE,

∵EF2=BE2+DF2

∴E、F是線段BD的勾股分割點.

②證明:如圖4中,連接FM,EN.

∵四邊形ABCD是正方形,

∴∠ADC=90°,∠BDC=∠ADB=45°,

∵∠MAN=45°,

∴∠EAN=∠EDN,∵∠AFE=∠FDN,

∴△AFE∽△DFN,

∴∠AEF=∠DNF, =,

=,∵∠AFD=∠EFN,

∴△AFD∽△EFN,

∴∠DAF=∠FEN,

∵∠DAF+∠DNF=90°,

∴∠AEF+∠FEN=90°,

∴∠AEN=90°

∴△AEN是等腰直角三角形,

同理△AFM是等腰直角三角形;

∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,

∴AM=AF,AN=AE,

∵S△AMN=AMANsin45°,

S△AEF=AEAFsin45°,

==2,

∴S△AMN=2S△AEF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,要把小河里的水引到田地A處,就作ABl(垂足為B),沿AB挖水溝,水溝最短.理由是___________

2)把命題“平行于同一直線的兩直線平行”寫成“如果……,那么……”的形式._____________________________

3)比較大。______

4)已知是同類項,則m-3n的平方根是___

5)已知點P的坐標為(3a+62a),且點P到兩坐標軸的距離相等,則點P的坐標是______

6 如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2018次運動后,動點P的坐標是______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c+1

1b=1時,求這個二次函數(shù)的對稱軸的方程;

2c=b22b,問:b為何值時,二次函數(shù)的圖象與x軸相切?

3若二次函數(shù)的圖象與x軸交于點Ax1,0),Bx2,0),且x1x2,b0,與y軸的正半軸交于點M,以AB為直徑的半圓恰好過點M,二次函數(shù)的對稱軸lx軸、直線BM、直線AM分別交于點D、E、F,且滿足=,求二次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上三點A,O,B表示的數(shù)分別為6,0,-4,動點PA出發(fā),以每秒6個單位的速度沿數(shù)軸向左勻速運動.

1)當點P到點A的距離與點P到點B的距離相等時,點P在數(shù)軸上表示的數(shù)是 ;

2)另一動點RB出發(fā),以每秒4個單位的速度沿數(shù)軸向左勻速運動,若點P、R同時出發(fā),問點P運動多少時間追上點R?

3)若MAP的中點,NPB的中點,點P在運動過程中,線段MN的長度是否發(fā)生變化?若發(fā)生變化,請你說明理由;若不變,請你畫出圖形,并求出線段MN的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知 AD 為△ABC 的高線,AD=BC,以 AB 為底邊作等腰 RtABE,連接 ED, EC,延長CE AD F 點,下列結論:①△ADE≌△BCE;②CEDE;③BD=AF;④SBDE=SACE,其中正確的有(

A. ①③B. ①②④C. ①②③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線 y=x2x與x軸交于A、B、兩點(點A在點B的左側),與y軸交于點C.

(1)判斷ABC形狀,并說明理由.

(2)在拋物線第四象限上有一點,它關于x軸的對稱點記為點P,點M是直線BC上的一動點,當PBC的面積最大時,求PM+MC的最小值;

(3)如圖2,點K為拋物線的頂點,點D在拋物線對稱軸上且縱坐標為,對稱軸右側的拋物線上有一動點E,過點E作EHCK,交對稱軸于點H,延長HE至點F,使得EF=,在平面內(nèi)找一點Q,使得以點F、H、D、Q為頂點的四邊形是軸對稱圖形,且過點Q的對角線所在的直線 是對稱軸,請問是否存在這樣的點Q,若存在請直接寫出點E的橫坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分8分)某廠制作甲、乙兩種環(huán)保包裝盒。已知同樣用6m的材料制成甲盒的個數(shù)比制成乙盒的個數(shù)少2個,且制成一個甲盒比制作一個乙盒需要多用20%的材料。

1)求制作每個甲盒、乙盒各用多少材料?

2)如果制作甲、乙兩種包裝盒3000個,且甲盒的數(shù)量不少于乙盒數(shù)量的2倍,那么請寫出所需材料總長度與甲盒數(shù)量之間的函數(shù)關系式,并求出最少需要多少米材料。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為1的正方形,E,F(xiàn)BD所在直線上的兩點.若AE= ,EAF=135°,則以下結論正確的是(

A. DE=1 B. tanAFO= C. AF= D. 四邊形AFCE的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,表中給出的是某月的月歷,任意選取型框中的個數(shù)(如陰影部分所示).請你運用所學的數(shù)學知識來研究,則這個數(shù)的和不可能是(

A.B.C.D.

查看答案和解析>>

同步練習冊答案