【題目】如圖,OABC的周長為7,∠AOC=60°,以O為原點,OC所在直線為x軸建立直角坐標(biāo)系,函數(shù)(x>0)的圖像經(jīng)過OABC的頂點A和BC的中點M,則k的值為( )
A.B.12C.D.6
【答案】C
【解析】
作AD⊥x軸于D,MN⊥x軸于N,設(shè)OA=a,根據(jù)題意得到OC=-a,解直角三角形表示出A、M的坐標(biāo),根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征得到關(guān)于a的方程,解得a,求得A的坐標(biāo),即可求得k的值.
解:作AD⊥x軸于D,MN⊥x軸于N,
∵四邊形OABC是平行四邊形,
∴OA=BC,AB=OC,OA∥BC,
∴∠BCN=∠AOC=60°.
設(shè)OA=a,由OABC的周長為7,
∴OC=-a,
∵∠AOC=60°,,
,
∵M是BC的中點,BC=OA=a,∴CM=a,
又∠MCN=60°,
,
∴ON=OC+CN=,
,
∵點A,M都在反比例函數(shù)的圖象上,
,解得a=2,
,
.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是的高, 直角的頂點是射線上一動點, 交直線于點所在直線交直線于點F.
(1)判斷△ABC的形狀,并說明理由;
(2)若G為AE的中點,求tan∠EAF的值;
(3)在點E的運(yùn)動過程中,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知拋物線與x軸交于A、B兩點,與y軸負(fù)方向交于C點,且.
(1)試求出拋物線的解析式;
(2)E為直線上.動點,F為拋物線對稱軸上一點,當(dāng)F點在對稱軸上何處時,四邊形ACFE的周長最短,并求出此時四邊形的周長;
(3)如圖(2),為x軸上一點,拋物線上x軸的上方是否存在點P,使得線段AP與直線CD相交且它們的夾角為45°,若存在這樣的P點,請求出P點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E是BC的中點,以AC為直徑的⊙O與AB邊交于點D,連接DE.
(1)求證:DE是⊙O的切線;
(2)若CD=6cm,DE=5cm,求⊙O直徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,、是兩座現(xiàn)代化城市,是一個古城遺址,城在城的北偏東,在城的北偏西,城在城的正東方向,且城與城相距120千米,現(xiàn)在、兩城市修建一條筆直的高速公路.
(1)請你計算公路的長度(結(jié)果保留根號);
(2)若以為圓心,以60千米為半徑的圓形區(qū)域內(nèi)為古跡和地下文物保護(hù)區(qū),請你分析公路會不會穿越這個保護(hù)區(qū),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊AB為直徑作⊙O,與BC交于點D,點E是弧BD的中點,連接AE交BC于點F,∠ACB=2∠BAE.
(1)求證:AC是⊙O的切線;
(2)若,BD=5,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的動點,將線段CD繞點C逆時針旋轉(zhuǎn)90°,得到線段CE,連接BE,則BE的最小值是( )
A.-1B.C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,E、F分別是邊CD、AD上動點,AE和BF交于點G.
(1)如圖(1),若E為邊CD的中點,AF=2FD,求AG的長.
(2)如圖(2),若點F在AD上從A向D運(yùn)動,點E在DC上從D向C運(yùn)動,兩點同時出發(fā),同時到達(dá)各自終點,求在運(yùn)動過程中,點G運(yùn)動的路徑長.
(3)如圖(3),若E、F分別是邊CD、AD上的中點,BD與AE交于點H,求∠FBD的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA是⊙O的切線,A是切點,AC是直徑,AB是弦,連接PB、PC,PC交AB于點E,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)若∠APC=3∠BPC,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com