【題目】如圖,拋物線a0)交x軸于A、B兩點,A點坐標(biāo)為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G

(1)求拋物線的解析式;

(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標(biāo)為m,請用含m的代數(shù)式表示PM的長;

(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和AEM相似?若存在,求出此時m的值;若不存在,請說明理由.

【答案】(1)y=-x2+x+4;(2)PM=-m2+4m(0<m<3);(3)存在這樣的點P使PFC與AEM相似.此時m的值為或1.

【解析】

試題分析:(1)將A(3,0),C(0,4)代入y=ax2-2ax+c,運用待定系數(shù)法即可求出拋物線的解析式;

(2)先根據(jù)A、C的坐標(biāo),用待定系數(shù)法求出直線AC的解析式,進而根據(jù)拋物線和直線AC的解析式分別表示出點P、點M的坐標(biāo),即可得到PM的長;

(3)由于PFC和AEM都是直角,F(xiàn)和E對應(yīng),則若以P、C、F為頂點的三角形和AEM相似時,分兩種情況進行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長,根據(jù)相似三角形對應(yīng)邊的比相等列出比例式,求出m的值.

試題解析:(1)拋物線y=ax2-2ax+c(a0)經(jīng)過點A(3,0),點C(0,4),

,

解得

拋物線的解析式為y=-x2+x+4;

(2)設(shè)直線AC的解析式為y=kx+b,

A(3,0),點C(0,4),

,

解得

直線AC的解析式為y=-x+4.

點M的橫坐標(biāo)為m,點M在AC上,

M點的坐標(biāo)為(m,-m+4),

點P的橫坐標(biāo)為m,點P在拋物線y=-x2+x+4上,

點P的坐標(biāo)為(m,-m2+m+4),

PM=PE-ME=(-m2+m+4)-(-m+4)=-m2+4m,

PM=-m2+4m(0<m<3);

(3)在(2)的條件下,連結(jié)PC,在CD上方的拋物線部分存在這樣的點P,使得以P、C、F為頂點的三角形和AEM相似.理由如下:由題意,可得AE=3-m,EM=-m+4,CF=m,若以P、C、F為頂點的三角形和AEM相似,情況:

P點在CD上方,則PF=-m2+m+4-4=-m2+m.

PFC∽△AEM,則PF:AE=FC:EM,

即(-m2+m):(3-m)=m:(-m+4),

m0且m3,

m=;

CFP∽△AEM,則CF:AE=PF:EM,

即m:(3-m)=(-m2+m):(-m+4),

m0且m3,

m=1.

綜上所述,存在這樣的點P使PFC與AEM相似.此時m的值為或1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

如圖1,拋物線經(jīng)過A(1,0),B(7,0),D(0, 三點,以AB為邊在x軸上方作等邊三角形ABC.

(1)求拋物線的解析式;

(2)在拋物線x軸上方是否存在點M,使S△ABM =S△ABC,若存在,請求出點M坐標(biāo);若不存在,請說明理由;

(3)如圖2,E是線段AC上的動點,F(xiàn)是線段BC上的動點,AF與BE相交于點P.

①若CE=BF,試猜想AF與BE的數(shù)量關(guān)系,請說明理由,并求出∠APB的度數(shù);

②若AF=BE,當(dāng)點E由A運動到C時,試求點P經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在多項式2x2xy3+18中,次數(shù)最高的項是【 】

A. 2 B. 18 C. 2x2 D. xy3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的內(nèi)角和比外角和的三倍少180°,則這個多邊形是(

A. 五邊形 B. 六邊形 C. 七邊形 D. 八邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC的外接圓圓心O在AB上,點D是BC延長線上一點,DMAB于M,交AC于N,且AC=CD.CP是CDN的ND邊的中線.

(1)求證:ABC≌△DNC;

(2)試判斷CP與O的位置關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)市委,市政府提出的實現(xiàn)偉大中國夢,建設(shè)美麗新城市的號召,我市某校在八,九年級開展征文活動,校學(xué)生會對這兩個年級各班內(nèi)的投稿情況進行統(tǒng)計,并制成了如圖所示的兩幅不完整的統(tǒng)計圖.

(1)求扇形統(tǒng)計圖中投稿篇數(shù)為2所對應(yīng)的扇形的圓心角的度數(shù):

(2)求該校八,九年級各班在這一周內(nèi)投稿的平均篇數(shù),并將該條形統(tǒng)計圖補充完整.

(3)在投稿篇數(shù)為9篇的兩個班級中,八,九年級各有兩個班,校學(xué)生會準(zhǔn)備從這四個中選出兩個班參加全市的表彰會,請你用列表法或畫樹狀圖的方法求出所選兩個班正好不在同一年級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B的坐標(biāo)分別為(1,1)和(5,4),拋物線y=ax2+bx+c(a≠0)的頂點在線段AB上運動,與x軸交于C、D兩點(C在D的左側(cè)),當(dāng)拋物線的頂點為A時,點C的橫坐標(biāo)為O,則點D的橫坐標(biāo)最大值為(

A.5 B.6 C.7 D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把x3﹣9x分解因式,結(jié)果正確的是(
A.x(x2﹣9)
B.x(x﹣3)2
C.x(x+3)2
D.x(x+3)(x﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在東西方向的海岸線l上有一長為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時刻測得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距20千米的A處;經(jīng)過40分鐘,又測得該輪船位于O的正北方向,且與O相距20千米的B處.

(1)求該輪船航行的速度;

(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.(參考數(shù)據(jù):,

查看答案和解析>>

同步練習(xí)冊答案