17.如圖,BE⊥AC、CF⊥AB于點(diǎn)E、F,BE與CF交于點(diǎn)D,DE=DF,連接AD.
(1)求證:∠FAD=∠EAD;
(2)連接BC,判斷線段AD與線段BC的關(guān)系,并說明理由.

分析 (1)由角平分線的判定方法得出∠FAD=∠EAD即可;
(2)延長(zhǎng)AD交BC于M,證出∠ABD=∠ACD,由AAS證明△ABD≌△ACD,得出AB=AC,由等腰三角形的三線合一性質(zhì)即可得出結(jié)論.

解答 (1)證明:∵BE⊥AC、CF⊥AB于點(diǎn)E、F,DE=DF,
∴AD平分∠BAC,
∴∠FAD=∠EAD;
(2)解:AD垂直平分BC,理由如下:
延長(zhǎng)AD交BC于M,如圖所示:
∵BE⊥AC、CF⊥AB于點(diǎn)E、F,
∴∠ABD+∠BAE=90°,∠ACD+∠BAE=90°,
∴∠ABD=∠ACD,
在△ABD和△ACD中,$\left\{\begin{array}{l}{∠FAD=∠EAD}&{\;}\\{∠ABD=∠ACD}&{\;}\\{AD=AD}&{\;}\end{array}\right.$,
∴△ABD≌△ACD(AAS),
∴AB=AC,
∵∠FAD=∠EAD,
∴AD垂直平分BC.

點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì)、角平分線的判定方法、等腰三角形的判定與性質(zhì);熟練掌握等腰三角形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.2014年12月云南景谷發(fā)生地震,某服裝廠接受抗震救災(zāi)指揮部下達(dá)的任務(wù),在規(guī)定實(shí)踐內(nèi)生產(chǎn)一批棉衣幫助受災(zāi)群眾度過寒冷的冬天,若每天生產(chǎn)40件,則差20件不能完成任務(wù),若每天生產(chǎn)50件,則可提前1天完成任務(wù)且多生產(chǎn)10件.
(1)規(guī)定時(shí)間多少天完成?
(2)這批棉衣的任務(wù)是多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.若a,b互為相反數(shù),c,d互為倒數(shù),m的絕對(duì)值為2,求|$\frac{a+b}{m+1}-{m}^{2}$|-|$\sqrt{2}-cd$|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,拋物線y=ax2+bx過點(diǎn)A(4,0),正方形 OABC的邊BC與拋物線的一個(gè)交點(diǎn)為D,點(diǎn)D的橫坐標(biāo)為3,點(diǎn)M在y軸負(fù)半軸上,直線l過點(diǎn)D、M兩點(diǎn)且與拋物線的對(duì)稱軸交于點(diǎn)H,tan∠OMD=$\frac{1}{3}$.
(1)直接寫出點(diǎn)H的坐標(biāo);
(2)求拋物線的解析式;
(3)如果點(diǎn)Q是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),那么是否存在點(diǎn)Q,使得以點(diǎn)O、M、Q、H為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.CD是經(jīng)過∠BCA的頂點(diǎn)C的一條直線,CA=CB,E、F分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠α,
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E、F在射線C、D上,請(qǐng)解答下面的兩個(gè)問題:
①如圖1,若∠BCA=90°,∠α=90°,則BE=CF,EF=|BE-AF|(填“>”、“<”、“=”);
②如圖2,若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件∠α+∠BCA=180°,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖,△ABE中,∠AEB=90°,AE=BE,BC平分∠ABE交AE于C,AD⊥BC于D,連DE.
(1)求證:BC=2AD;
(2)求證:AB=AE+CE;
(3)求證:∠EDB=45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.一條線段AB,繞點(diǎn)A逆時(shí)針連續(xù)旋轉(zhuǎn)9次,恰好旋轉(zhuǎn)了一周回到原來的位置,如果每一次旋轉(zhuǎn)a°或90-a°(其中0<a<90°),那么a有( 。┓N可能的取值.
A.4B.6C.8D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,在△ABC中,AB=AC,過點(diǎn)A作AD∥BC,若∠1=65°,則∠BAC的大小為( 。
A.45°B.50°C.60°D.65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.要使分式$\frac{3}{x-1}$有意義,則x的取值范圍是x≠1.

查看答案和解析>>

同步練習(xí)冊(cè)答案