【題目】如圖所示,甲、乙兩人在玩轉(zhuǎn)盤(pán)游戲時(shí),分別把轉(zhuǎn)盤(pán)A,B分成3等份和1等份,并在每一份內(nèi)標(biāo)上數(shù)字.游戲規(guī)則:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止后,指針?biāo)趨^(qū)域的數(shù)字之積為奇數(shù)時(shí),甲獲勝;當(dāng)數(shù)字之積為偶數(shù)時(shí),乙獲勝.如果指針恰好在分割線(xiàn)上時(shí),則需重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán).
(1)利用畫(huà)樹(shù)狀圖或列表的方法,求甲獲勝的概率.
(2)這個(gè)游戲規(guī)則對(duì)甲、乙雙方公平嗎?若公平,請(qǐng)說(shuō)明理由;若不公平,請(qǐng)你在轉(zhuǎn)盤(pán)A上只修改一個(gè)數(shù)字使游戲公平(不需要說(shuō)明理由).
【答案】(1)見(jiàn)解析,甲獲勝概率為;(2)這個(gè)游戲規(guī)則對(duì)甲、乙雙方不公平,將轉(zhuǎn)盤(pán)A上的數(shù)字2改為1,則游戲公平.
【解析】
(1)列表得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計(jì)算可得;
(2)先計(jì)算出數(shù)字之積為偶數(shù)的概率,判斷概率是否相等即可得知游戲是否公平.
解:(1)列表如下:
﹣2 | ﹣3 | 2 | 3 | |
1 | ﹣2 | ﹣3 | 2 | 3 |
2 | ﹣4 | ﹣6 | 4 | 6 |
3 | ﹣6 | ﹣9 | 6 | 9 |
由表可知,共有12種等可能結(jié)果,其中指針?biāo)趨^(qū)域的數(shù)字之積為奇數(shù)的有4種結(jié)果,
所以甲獲勝概率為;
(2)∵指針?biāo)趨^(qū)域的數(shù)字之積為偶數(shù)的概率為,
∴這個(gè)游戲規(guī)則對(duì)甲、乙雙方不公平,
將轉(zhuǎn)盤(pán)A上的數(shù)字2改為1,則游戲公平.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,G是邊AB的中點(diǎn),平行于AB的動(dòng)直線(xiàn)l分別交△ABC的邊CA、CB于點(diǎn)M、N,設(shè)CM=m.
(1)當(dāng)m=1時(shí),求△MNG的面積;
(2)若點(diǎn)G關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)為點(diǎn)G′,請(qǐng)求出點(diǎn)G′ 恰好落在△ABC的內(nèi)部(不含邊界)時(shí),m的取值范圍;
(3)△MNG是否可能為直角三角形?如果能,請(qǐng)求出所有符合條件的m的值;如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:如圖①,點(diǎn)在直線(xiàn)上,點(diǎn)在直線(xiàn)外,連結(jié).過(guò)線(xiàn)段的中點(diǎn)作,交的平分線(xiàn)于點(diǎn),連結(jié).求證:.
應(yīng)用:如圖②,點(diǎn)在內(nèi)部,連結(jié).過(guò)線(xiàn)段的中點(diǎn)作,交的平分線(xiàn)于點(diǎn);作,交的平分線(xiàn)于點(diǎn),連結(jié)、.若,則的大小為多少度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知點(diǎn)為正方形的對(duì)角線(xiàn)的交點(diǎn),點(diǎn)是對(duì)角線(xiàn)上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與重合),分別過(guò)點(diǎn)向直線(xiàn)作垂線(xiàn),垂足分別為點(diǎn),連接和.
(1)求證:;
(2)如圖②,延長(zhǎng)正方形對(duì)角線(xiàn),當(dāng)點(diǎn)運(yùn)動(dòng)到的延長(zhǎng)線(xiàn)上時(shí),通過(guò)證明判斷(1)中的結(jié)論是否仍然成立;
(3)若點(diǎn)在射線(xiàn)上運(yùn)動(dòng),,求線(xiàn)段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點(diǎn),以AE為折痕折疊紙片,使點(diǎn)B落在點(diǎn)F處,連接FC,當(dāng)△EFC為直角三角形時(shí),BE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖乙,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)P為射線(xiàn)BD,CE的交點(diǎn).
(1)如圖甲,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)C、D、E在同一條直線(xiàn)上時(shí),連接BD、BE,則下列給出的四個(gè)結(jié)論中,其中正確的是哪幾個(gè) .(回答直接寫(xiě)序號(hào))
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)
(2)若AB=6,AD=3,把△ADE繞點(diǎn)A旋轉(zhuǎn):
①當(dāng)∠CAE=90°時(shí),求PB的長(zhǎng);
②直接寫(xiě)出旋轉(zhuǎn)過(guò)程中線(xiàn)段PB長(zhǎng)的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前世界上最高的電視塔是廣州新電視塔.如圖所示,新電視塔高AB為610米,遠(yuǎn)處有一棟大樓,某人在樓底C處測(cè)得塔頂B的仰角為45°,在樓頂D處測(cè)得塔頂B的仰角為39°.
(1)求大樓與電視塔之間的距離AC;
(2)求大樓的高度CD(精確到1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】合與實(shí)踐﹣﹣探究圖形中角之間的等量關(guān)系及相關(guān)問(wèn)題.
問(wèn)題情境:
正方形ABCD中,點(diǎn)P是射線(xiàn)DB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)C作CE⊥AP于點(diǎn)E,點(diǎn)Q與點(diǎn)P關(guān)于點(diǎn)E對(duì)稱(chēng),連接CQ,設(shè)∠DAP=α(0°<α<135°),∠QCE=β.
初步探究:
(1)如圖1,為探究α與β的關(guān)系,勤思小組的同學(xué)畫(huà)出了0°<α<45°時(shí)的情形,射線(xiàn)AP與邊CD交于點(diǎn)F.他們得出此時(shí)α與β的關(guān)系是β=2α.借助這一結(jié)論可得當(dāng)點(diǎn)Q恰好落在線(xiàn)段BC的延長(zhǎng)線(xiàn)上(如圖2)時(shí),α= °,β= °;
深入探究:
(2)敏學(xué)小組的同學(xué)畫(huà)出45°<α<90°時(shí)的圖形如圖3,射線(xiàn)AP與邊BC交于點(diǎn)G.請(qǐng)猜想此時(shí)α與β之間的等量關(guān)系,并證明結(jié)論;
拓展延伸:
(3)請(qǐng)你借助圖4進(jìn)一步探究:①當(dāng)90°<α<135°時(shí),α與β之間的等量關(guān)系為 ;
②已知正方形邊長(zhǎng)為2,在點(diǎn)P運(yùn)動(dòng)過(guò)程中,當(dāng)α=β時(shí),PQ的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五一放假期間,甲、乙、丙三位同學(xué)到某影城看電影,影城有A,B兩部不同電影,甲、乙、丙3人分別從中任選一部觀(guān)看,每部被選中的可能性相同.
(1)甲同學(xué)選擇“A部電影”的概率為 ;
(2)用畫(huà)樹(shù)狀圖的方法求甲、乙、丙3人選擇同一部電影的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com