【題目】某校開展了以“責(zé)任、感恩”為主題的班隊活動,活動結(jié)束后,初三(2)班數(shù)學(xué)興趣小組提出了5個主要觀點并在本班學(xué)生中進行了調(diào)查(要求每位同學(xué)只選自己最認(rèn)可的一項觀點),并制成了如下扇形統(tǒng)計圖,
(1)該班有 人,學(xué)生選擇“和諧”觀點的有 人,在扇形統(tǒng)計圖中,“和諧”觀點所在扇形區(qū)域的圓心角是 度;
(2)如果該校有360名初三學(xué)生,利用樣本估計選擇“感恩”觀點的初三學(xué)生約有 人;
(3)如果數(shù)學(xué)興趣小組在這5個主要觀點中任選兩項觀點在全校學(xué)生中進行調(diào)查,求恰好選到“和諧”和“感恩”觀點的概率(用樹狀圖或列表法分析解答).
【答案】(1) 40,4,36;(2) 90(人)(3).
【解析】
(1)根據(jù)選擇進取的人數(shù)是12,占總?cè)藬?shù)的30%,據(jù)此即可求得總?cè)藬?shù);總?cè)藬?shù)乘以選擇“和諧”觀點的比例即可求得選擇“和諧”觀點的人數(shù);選擇“和諧”觀點的百分比乘以360°,即可求得,“和諧”觀點所在扇形區(qū)域的圓心角;
(2)總?cè)藬?shù)360乘以選擇“感恩”觀點比例,即可求得;
(3)設(shè)平等、進取、和諧、感恩、互助分別用ABCDE表示.利用樹狀圖表示,即可利用概率公式求解.
(1)該班的總?cè)藬?shù)是:12÷30%=40(人);
選擇“和諧”觀點的有40×10%=4(人);
“和諧”觀點所在扇形區(qū)域的圓心角是360°×10%=36°;
(2)該校有360名初三學(xué)生,利用樣本估計選擇“感恩”觀點的初三學(xué)生約有:360×25%=90(人);
(3)設(shè)平等、進取、和諧、感恩、互助分別用ABCDE表示.利用樹狀圖表示:
共有20種情況,選擇和諧、感恩的有2種情況,因而恰好選到“和諧”和“感恩”觀點的概率是:=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一超市從一樓到二樓有一自動扶梯,圖2是側(cè)面示意圖.已知自動扶梯AB的坡度為1∶2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為37°,則二樓的層高BC約為(精確到0.1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)( 。
圖1 圖2
A. 4米 B. 3.6米 C. 2.2米 D. 4.6米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD中,如圖,對角線AC和BD相交于點O,AC=10,BD=8.
(1)若AC⊥BD,試求四邊形ABCD的面積;
(2)若AC與BD的夾角∠AOD=60°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD在平面直角坐標(biāo)系的第一象限內(nèi),BC與x軸平行,AB=1,點C的坐標(biāo)為(6,2),E是AD的中點;反比例函數(shù)y1=(x>0)圖象經(jīng)過點C和點E,過點B的直線y2=ax+b與反比例函數(shù)圖象交于點F,點F的縱坐標(biāo)為4.
(1)求反比例函數(shù)的解析式和點E的坐標(biāo);
(2)求直線BF的解析式;
(3)直接寫出y1>y2時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時每件的成本為40元,通過試銷發(fā)現(xiàn),銷售量萬件與銷售單價元之間符合一次函數(shù)關(guān)系,其圖象如圖所示.
求y與x的函數(shù)關(guān)系式;
物價部門規(guī)定:這種電子產(chǎn)品銷售單價不得超過每件80元,那么,當(dāng)銷售單價x定為每件多少元時,廠家每月獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+2x+3與x軸交于A、B兩點,與y軸交于點C,頂點為D,連接BC
(1)點G是直線BC上方拋物線上一動點(不與B、C重合),過點G作y軸的平行線交直線BC于點E,作GF⊥BC于點F,點M、N是線段BC上兩個動點,且MN=EF,連接DM、GN.當(dāng)△GEF的周長最大時,求DM+MN+NG的最小值;
(2)如圖2,連接BD,點P是線段BD的中點,點Q是線段BC上一動點,連接DQ,將△DPQ沿PQ翻折,且線段D′P的中點恰好落在線段BQ上,將△AOC繞點O逆時針旋轉(zhuǎn)60°得到△A′OC′,點T為坐標(biāo)平面內(nèi)一點,當(dāng)以點Q、A′、C′、T為頂點的四邊形是平行四邊形時,求點T的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶承包荒山種植某產(chǎn)品種蜜柚已知該蜜柚的成本價為8元千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷量千克與銷售單價元千克之間的函數(shù)關(guān)系如圖所示.
求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
當(dāng)該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,AB為⊙O的直徑,BD⊥AB,交AC的延長線于點D.
(1)E為BD的中點,連結(jié)CE,求證:CE是⊙O的切線;
(2)若AC=3CD,求∠A的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解全校400名學(xué)生參加課外鍛煉的情況,隨機對40名學(xué)生一周內(nèi)平均每天參加課外鍛煉的時間進行了調(diào)查,結(jié)果如下:(單位:分)
40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36
34 53 38 40 39 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45
(1)補全頻率分布表和頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
4.5﹣22.5 | 2 | 0.050 |
22.5﹣30.5 | 3 | |
30.5﹣38.5 | 10 | 0.250 |
38.5﹣46.5 | 19 | |
46.5﹣54.5 | 5 | 0.125 |
54.5﹣62.5 | 1 | 0.025 |
合計 | 40 | 1.000 |
(2)填空:在這個問題中,總體是____,樣本是____.由統(tǒng)計結(jié)果分析的,這組數(shù)據(jù)的平均數(shù)是38.35(分),眾數(shù)是____,中位數(shù)是_____.
(3)如果描述該校400名學(xué)生一周內(nèi)平均每天參加課外鍛煉時間的總體情況,你認(rèn)為用平均數(shù)、眾數(shù)、中位數(shù)中的哪一個量比較合適?
(4)估計這所學(xué)校有多少名學(xué)生,平均每天參加課外鍛煉的時間多于30分?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com