【題目】如圖1,已知拋物線y=﹣x2+2x+3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,連接BC
(1)點(diǎn)G是直線BC上方拋物線上一動(dòng)點(diǎn)(不與B、C重合),過(guò)點(diǎn)G作y軸的平行線交直線BC于點(diǎn)E,作GF⊥BC于點(diǎn)F,點(diǎn)M、N是線段BC上兩個(gè)動(dòng)點(diǎn),且MN=EF,連接DM、GN.當(dāng)△GEF的周長(zhǎng)最大時(shí),求DM+MN+NG的最小值;
(2)如圖2,連接BD,點(diǎn)P是線段BD的中點(diǎn),點(diǎn)Q是線段BC上一動(dòng)點(diǎn),連接DQ,將△DPQ沿PQ翻折,且線段D′P的中點(diǎn)恰好落在線段BQ上,將△AOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到△A′OC′,點(diǎn)T為坐標(biāo)平面內(nèi)一點(diǎn),當(dāng)以點(diǎn)Q、A′、C′、T為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)T的坐標(biāo).
【答案】(1)DM+MN+NG最小值為;(2)點(diǎn)T的坐標(biāo)為(,)或(,)或(,)
【解析】
(1)先求出點(diǎn)B、C、D的坐標(biāo),可求直線BC解析式且得到∠OCB=45°.由GE∥y軸和GF⊥BC可得△GEF是等腰直角三角形,則GE最大時(shí)其周長(zhǎng)最大.設(shè)點(diǎn)G坐標(biāo)為(a,﹣a2+2a+3),則點(diǎn)E(a,﹣a+3),可列得GE與a的函數(shù)關(guān)系式,配方可求出其最大值,得到此時(shí)的G坐標(biāo)和EF的長(zhǎng),即得到MN長(zhǎng).求DM+MN+NG最小值轉(zhuǎn)化為求DM+NG最小值.先作D關(guān)于直線BC的對(duì)稱點(diǎn)D1,再通過(guò)平移MD1得D2,構(gòu)造“將軍飲馬”的基本圖形求解.
(2)由翻折得DD'⊥PQ,PD=PD',再由P為BD中點(diǎn)證得∠BD'D=90°,得PQ∥BD',又D'P中點(diǎn)H在BQ上,可證△PQH≌△D'BH,所以有D'Q∥BP即四邊形DQD'P為菱形,得DQ=DP.設(shè)Q點(diǎn)坐標(biāo)為(q,﹣q+3)即可列方程求得.再根據(jù)題意把點(diǎn)A'、C'求出.以點(diǎn)Q、A′、C′、T為頂點(diǎn)的四邊形是平行四邊形,要進(jìn)行分類討論,結(jié)合圖形,利用平行四邊形對(duì)邊平行的性質(zhì),用平移坐標(biāo)的方法即可求得點(diǎn)T.
(1)y=﹣x2+2x+3=﹣(x﹣3)(x+1)=﹣(x﹣1)2+4
∴拋物線與x軸交于點(diǎn)A(﹣1,0)、點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3),頂點(diǎn)D(1,4),
∴直線CB解析式:y=﹣x+3,∠BCO=45°
∵GE∥y軸,GF⊥BC
∴∠GEF=∠BCO=45°,∠GFE=90°
∴△GEF是等腰直角三角形,,
∴C△GEF=EF+FG+GE=(+1)GE
設(shè)點(diǎn)G(a,﹣a2+2a+3),則點(diǎn)E(a,﹣a+3),其中0<a<3
∴GE=﹣a2+2a+3﹣(﹣a+3)=﹣a2+3a
∴a時(shí),GE有最大值為,
∴△GEF的周長(zhǎng)最大時(shí),
∴ E點(diǎn)可看作點(diǎn)F向右平移個(gè)單位、向下平移個(gè)單位
如圖1,作點(diǎn)D關(guān)于直線BC的對(duì)稱點(diǎn)D1(﹣1,2),過(guò)N作ND2∥D1M且ND2=D1M
∴DM=D1M=ND2, ,即
∴DM+MN+NG=MN+ND2+NG
∴當(dāng)D2、N、G在同一直線上時(shí),ND2+NG=D2G為最小值
∵
∴DM+MN+NG最小值為
(2)連接DD'、D'B,設(shè)D'P與BQ交點(diǎn)為H(如圖2)
∵△△DPQ沿PQ翻折得△D'PQ
∴DD'⊥PQ,PD=PD',DQ=D'Q,∠DQP=∠D'QP
∵P為BD中點(diǎn)
∴PB=PD=PD',P(2,2)
∴△BDD'是直角三角形,∠BD'D=90°
∴PQ∥BD'
∴∠PQH=∠D'BH
∵H為D'P中點(diǎn)
∴PH=D'H
在△PQH與△D'BH中
∴△PQH≌△D'BH(AAS)
∴PQ=BD'
∴四邊形BPQD'是平行四邊形
∴D'Q∥BP
∴∠DPQ=∠D'QP
∴∠DQP=∠DPQ
∴DQ=DP
∴DQ2=DP2=(2﹣1)2+(2﹣4)2=5
設(shè)Q(q,﹣q+3)(0<q<3)
∴(q﹣1)2+(﹣q+3﹣4)2=5
解得:(舍去)
∴點(diǎn)Q坐標(biāo)為
∵△AOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到△A′OC′
∴
∴A'、C'橫坐標(biāo)差為,縱坐標(biāo)差為
A'、Q橫坐標(biāo)差為,縱坐標(biāo)差為
當(dāng)有平行四邊形A'C'TQ時(shí)(如圖3),點(diǎn)T橫坐標(biāo)為,縱坐標(biāo)為
當(dāng)有平行四邊形A'C'QT時(shí)(如圖4),點(diǎn)T橫坐標(biāo)為,縱坐標(biāo)為
當(dāng)有平行四邊形A'TC'Q時(shí)(如圖5),點(diǎn)T橫坐標(biāo)為 ,縱坐標(biāo)為
綜上所述,點(diǎn)T的坐標(biāo)為(,)或(,)或(,)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】材料一:把一個(gè)自然數(shù)的個(gè)位數(shù)字截去,再用余下的數(shù)減去個(gè)位數(shù)的2倍,如果差是7的倍數(shù),則原數(shù)能被7整除.如果差太大不易看出是否7的倍數(shù),可重復(fù)上述「截尾、倍大、相減、驗(yàn)差」的過(guò)程,直到能清楚判斷為止.例如,判斷392是否7的倍數(shù)的過(guò)程如下:,,所以,392是7的倍數(shù);又例如判斷8638是否7的倍數(shù)的過(guò)程如下:,,,所以,8638是7的倍數(shù).
材料二:若一個(gè)四位自然數(shù)n滿足千位與個(gè)位相同,百位與十位相同,我們稱這個(gè)數(shù)為“對(duì)稱數(shù)”.將“對(duì)稱數(shù)”n的前兩位與后兩位交換位置得到一個(gè)新的“對(duì)稱數(shù)”,記,例如.
(1)請(qǐng)用材料一的方法判斷6909與367能不能被7整除;
(2)若m、p是“對(duì)稱數(shù)”,其中,(,且a,b,c均為整數(shù)),若m能被7整除,且,求p.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出以下結(jié)論,①ab<0,②b2﹣4ac>0,③4b+c<0,④若B(﹣,y1)、C(﹣,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2,⑤當(dāng)﹣3≤x≤1時(shí),y≥0,其中正確的結(jié)論是( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為2000元、1700元的A、B兩種型號(hào)的空調(diào),如表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 18000元 |
第二周 | 4臺(tái) | 10臺(tái) | 31000元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售總收入進(jìn)貨成本)
(1)求A、B兩種型號(hào)的空調(diào)的銷售單價(jià);
(2)若超市準(zhǔn)備用不多于54000元的金額再采購(gòu)這兩種型號(hào)的空調(diào)共30臺(tái),求A種型號(hào)的空調(diào)最多能采購(gòu)多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展了以“責(zé)任、感恩”為主題的班隊(duì)活動(dòng),活動(dòng)結(jié)束后,初三(2)班數(shù)學(xué)興趣小組提出了5個(gè)主要觀點(diǎn)并在本班學(xué)生中進(jìn)行了調(diào)查(要求每位同學(xué)只選自己最認(rèn)可的一項(xiàng)觀點(diǎn)),并制成了如下扇形統(tǒng)計(jì)圖,
(1)該班有 人,學(xué)生選擇“和諧”觀點(diǎn)的有 人,在扇形統(tǒng)計(jì)圖中,“和諧”觀點(diǎn)所在扇形區(qū)域的圓心角是 度;
(2)如果該校有360名初三學(xué)生,利用樣本估計(jì)選擇“感恩”觀點(diǎn)的初三學(xué)生約有 人;
(3)如果數(shù)學(xué)興趣小組在這5個(gè)主要觀點(diǎn)中任選兩項(xiàng)觀點(diǎn)在全校學(xué)生中進(jìn)行調(diào)查,求恰好選到“和諧”和“感恩”觀點(diǎn)的概率(用樹(shù)狀圖或列表法分析解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CE⊥AB于E,BD交CE于點(diǎn)F,CF=BF.
(1)求證:C是的中點(diǎn);
(2)若CD=4,AC=8,則⊙O的半徑為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校對(duì)A《唐詩(shī)》、B《宋詞》、C《蒙山童韻》、D其它,這四類著作開(kāi)展“最受歡迎的傳統(tǒng)文化著作”調(diào)查,隨機(jī)調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四類著作中的一種)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計(jì)圖:
(1)求一共調(diào)查了多少名學(xué)生;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校語(yǔ)文老師想從這四類著作中隨機(jī)選取兩類作為學(xué)生寒假必讀書(shū)籍,請(qǐng)用樹(shù)狀圖或列表的方法求恰好選中《宋詞》和《蒙山童韻》的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是AB上一點(diǎn),以O(shè)A為半徑的⊙O與BC相切于點(diǎn)D,與AB交于點(diǎn)E,連接ED并延長(zhǎng)交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:AE=AF;
(2)若DE=3,sin∠BDE=,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點(diǎn)C.
(1)若點(diǎn)A(0,6),N(0,2),∠ABN=30°,求點(diǎn)B的坐標(biāo);
(2)若D為線段NB的中點(diǎn),求證:直線CD是⊙M的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com