【題目】如圖,某廣場一燈柱AB被一鋼纜CD固定,CD與地面成40°夾角,且CB=5米.

1)求鋼纜CD的長度;(精確到01米)

2)若AD=2米,燈的頂端E距離A16米,且∠EAB=120°,則燈的頂端E距離地面多少米?

(參考數(shù)據(jù):tan400=084, sin400=064cos400=

【答案】167;(27

【解析】試題分析:(1)利用三角函數(shù)求得CD的長;

2)過EAB的垂線,垂足為F,根據(jù)三角函數(shù)求得BDAF的長,則FB的長就是點E到地面的距離.

試題解析:解:(1)在Rt△BCD中,

≈67;

2)在Rt△BCD中,BC=5,∴BD=5tan40°=42

EAB的垂線,垂足為F

Rt△AFE中,AE=16,∠EAF=180°﹣120°=60°

AF==08

∴FB=AF+AD+BD=08+2+420=7米.

答:鋼纜CD的長度為67米,燈的頂端E距離地面7米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,點在線段上,,,點,分別是線段,的中點.求線段的長;

2)點在線段上,若,點分別是線段,的中點.你能得出的長度嗎?并說明理由.

3)類似的,如圖2,是直角,射線外部,且是銳角,的平分線,的平分線.當(dāng)的大小發(fā)生改變時,的大小也會發(fā)生改變嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩校的學(xué)生人數(shù)基本相同,為了解這兩所學(xué)校學(xué)生的數(shù)學(xué)學(xué)業(yè)水平,在某次測試中,從兩校各隨機抽取了30名學(xué)生的測試成績進行調(diào)查分析,其中甲校已經(jīng)繪制好了條形統(tǒng)計圖,乙校只完成了一部分.

1)請根據(jù)乙校的數(shù)據(jù)補全條形統(tǒng)計圖:

2)兩組樣本數(shù)據(jù)的平均數(shù).中位數(shù)眾數(shù)如下表所示,寫出的值:

平均數(shù)

中位數(shù)

眾數(shù)

甲校

乙校

3)兩所學(xué)校的同學(xué)都想依據(jù)抽樣的數(shù)據(jù)說明自己學(xué)校學(xué)生的數(shù)學(xué)學(xué)業(yè)水平更好些,請為他們各寫出條可以使用的理由;甲校:____.乙校:________.

4)綜合來看,可以推斷出________校學(xué)生的數(shù)學(xué)學(xué)業(yè)水平更好些,理由為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與坐標(biāo)原點重合,點C的坐標(biāo)為(0,3),點A在x軸的負(fù)半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)y=的圖象經(jīng)過點D,與BC的交點為N

(1)求反比例函數(shù)和一次函數(shù)的表達式;

(2)若點P在直線DM上,且使△OMP的面積等于2,求點P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=ax2+bx﹣4的圖象開口向上,與x軸的交點為(4,0)、(﹣2,0),則當(dāng)x1=﹣1,x2=2時,對應(yīng)的函數(shù)值y1y2的大小關(guān)系為( 。

A. y1>y2 B. y1=y2 C. y1<y2 D. 不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某校組織的交通安全宣傳教育月活動中,八年級數(shù)學(xué)興趣小組的同學(xué)進行了如下的課外實踐活動.具體內(nèi)容如下:在一段筆直的公路上選取兩點A、B,在公路另一側(cè)的開闊地帶選取一觀測點C,在C處測得點A位于C點的南偏西45°方向,且距離為100米,又測得點B位于C點的南偏東60°方向.已知該路段為鄉(xiāng)村公路,限速為60千米/時,興趣小組在觀察中測得一輛小轎車經(jīng)過該路段用時13秒,請你幫助他們算一算,這輛小車是否超速?(參考數(shù)據(jù):≈1.41,≈1.73,計算結(jié)果保留兩位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分ABC,PBD上一點,過點PPM^AD,PN^CD,垂足分別為M、N。

1)求證:ADB=CDB;

2)若ADC=90°,求證:四邊形MPND是正方形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和父母打算去某火鍋店吃火鍋,該店在網(wǎng)上出售“元抵元的全場通用代金券”(即面值元的代金券實付元就能獲得),店家規(guī)定代金券等同現(xiàn)金使用,一次消費最多可用張代金券,而且使用代金券的金額不能超過應(yīng)付總金額.

(1)如果小明一家應(yīng)付總金額為元,那么用代金券方式買單,他們最多可以優(yōu)惠多少元:

(2)小明一家來到火鍋店后,發(fā)現(xiàn)店家現(xiàn)場還有一個優(yōu)惠方式: 除鍋底不打折外,其余菜品全部.小明一家點了一份元的鍋底和其他菜品,用餐完畢后,聰明的小明對比兩種優(yōu)惠,選擇了現(xiàn)場優(yōu)惠方式買單,這樣比用代金券方式買單還能少付.問小明一家實際付了多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,點EBC邊的中點,DEAC相交于點F,連接BF,下列結(jié)論:①SABF=SADFSCDF=4SCEF;SADF=2SCEFSADF=2SCDF,其中正確的是( 。

A. ①③ B. ②③ C. ①④ D. ②④

查看答案和解析>>

同步練習(xí)冊答案