【題目】已知二次函數(shù)y=﹣x2+3x+4的圖象如圖:(直接寫答案)

(1)方程﹣x2+3x+4=0的解是   

(2)不等式﹣x2+3x+4>0的解集是   ;

(3)不等式﹣x2+3x+4<0的解集是   

【答案】(1)x1=﹣1,x2=4;(2)﹣1<x<4;(3)x<﹣1或x>4.

【解析】1)二次函數(shù)y=﹣x2+3x+4的圖象與x軸的交點(diǎn)橫坐標(biāo)就是方程﹣x2+3x+4=0的解;

2)看x軸上方圖象x的取值范圍;

3)看x軸下方圖象x的取值范圍.

解:由圖象可知:

1)方程﹣x2+3x+4=0的解是x1=﹣1x2=4;

2)不等式﹣x2+3x+40的解集是﹣1x4;

3)不等式﹣x2+3x+40的解集是x﹣1,或x4

故答案為:x1=﹣1,x2=4﹣1x4;x﹣1,或x4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)課上,王老師在黑板上畫出一幅圖,并寫下了四個(gè)等式:

,,

1)上述四個(gè)條件中,由哪兩個(gè)條件可以判定是等腰三角形?用序號(hào)寫出所有成立的情形.

2)請(qǐng)選擇(1)中的一種情形,寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市開展一項(xiàng)自行車旅游活動(dòng),線路需經(jīng)A、B、C、D四地,如圖,其中A、B、C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問沿上述線路從A地到D地的路程大約是多少?(最后結(jié)果保留整數(shù),參考數(shù)據(jù):sin15°0.25,cos15°0.97,tan15°0.27,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過直線上一點(diǎn),作,,若,①你還能求出哪些角的度數(shù)_____________________(至少寫出兩個(gè),直角和平角除外);

②與互余的角有__________,它們的數(shù)量關(guān)系是________;由此你得出的結(jié)論是_____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角三角形ABC中,∠ABC=90,將三角形ABC繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)一定角度得到三角形BEFEFBC于點(diǎn)G

1)若,當(dāng)∠ABE等于多少度時(shí),;

2)若,,,當(dāng)時(shí),

①求BG的長(zhǎng);

②連接AFBE于點(diǎn)O,連接AE(如圖2),設(shè)三角形EOF的面積為m,求三角形AEO的面積(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊OAB的頂點(diǎn)O為坐標(biāo)原點(diǎn),ABx軸,OA=2,將等邊OAB繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)105OCD的位置,則點(diǎn)D的坐標(biāo)為(

A.(2,-2)B.()C.(,)D.()

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為10 AB=16, BA的左側(cè),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.

1)寫出數(shù)軸上點(diǎn)B表示的數(shù)_______

2)線段AP的長(zhǎng)為________(用含t的代數(shù)式表示)

3)若動(dòng)點(diǎn)QB出發(fā),以每秒1個(gè)單位的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若P,Q同時(shí)出發(fā),求運(yùn)動(dòng)多少秒時(shí),P、Q相遇?

4)若動(dòng)點(diǎn)QB出發(fā),以每秒1個(gè)單位的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若P,Q同時(shí)出發(fā), 求點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某區(qū)初中生一周課外閱讀時(shí)長(zhǎng)的情況,隨機(jī)抽取部分中學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,將閱讀時(shí)長(zhǎng)分為四類:2小時(shí)以內(nèi),24小時(shí)(含2小時(shí)),46小時(shí)(含4小時(shí)),6小時(shí)及以上,并繪制了如圖所示不完整的統(tǒng)計(jì)圖.

1)本次調(diào)查共隨機(jī)抽取了 名學(xué)生;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)長(zhǎng)“46小時(shí)”對(duì)應(yīng)的圓心角度數(shù)為 ;

4)若該區(qū)共有10 000名初中生,估計(jì)該地區(qū)中學(xué)生一周課外閱讀時(shí)長(zhǎng)不少于4小時(shí)的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案