【題目】有兩張相同的矩形紙片ABCD和A′B′C′D′,其中AB=3,BC=8.
(1)若將其中一張矩形紙片ABCD沿著BD折疊,點(diǎn)A落在點(diǎn)E處(如圖1),設(shè)DE與BC相交于點(diǎn)F,求BF的長(zhǎng);
(2)若將這兩張矩形紙片交叉疊放(如圖2),判斷四邊形MNPQ的形狀,并證明.四邊形MNPQ的最大面積是_________.(直接寫(xiě)出結(jié)果)
【答案】①BF=②
【解析】試題分析:
(1)由折疊的性質(zhì)結(jié)合AD∥BC易得∠FBD=∠ADB=∠FDB,由此可得BF=DF,設(shè)BF=x,結(jié)合DE=AD=BC=8,可得EF=8-x,結(jié)合BE=AB=3,在Rt△BEF中由勾股定理建立方程即可求得BF的值;
(2)①如圖3,過(guò)點(diǎn)Q作QE⊥PN于點(diǎn)E,過(guò)點(diǎn)N過(guò)NF⊥PQ于點(diǎn)F,則易證△QEP≌△NFP,從而可得PQ=PN,由已知條件易證四邊形MNPQ是平行四邊形,兩者結(jié)合即可得到四邊形MNPQ是菱形;
②如圖4,由題意可知,菱形MNPQ邊上的高是3,故當(dāng)邊長(zhǎng)越長(zhǎng)時(shí),面積越大,由題意可知,當(dāng)點(diǎn)M與點(diǎn)A重合、點(diǎn)P與點(diǎn)C重合時(shí),邊長(zhǎng)MQ=AQ=QC,此時(shí)面積最大,在Rt△ABQ中,由勾股定理建立方程解出MQ的長(zhǎng),即可求得最大面積了.
試題解析:
(1)∵四邊形ABCD是矩形,
∴AD∥BC,AD=BC=8,
∴∠ADB=∠DBC,
由折疊的性質(zhì)可知,∠ADB=∠FDB,BE=AB=3,DE=AD=8,
∴∠DBC=∠FDB,
∴BF=DF,
設(shè)BF=x,則DF=x,
∴EF=8-x,
∵在Rt△BEF中,BF2=BE2+EF2,
∴,解得: ;
(2)①如圖2,四邊形MNPQ是菱形,理由如下:
過(guò)點(diǎn)Q作QE⊥PN于點(diǎn)E,過(guò)點(diǎn)N過(guò)NF⊥PQ于點(diǎn)F,
∴∠PEQ=∠PFN=90°,
∵兩張紙條等寬,
∴NF=QE,
∵∠NPF=∠QPE,
∴△QEP≌△NFP,
∴PQ=PN,
∵由題意可得:MN∥PQ,MQ∥NP,
∴四邊形MNPQ是平行四邊形,
∴四邊形MNPQ是菱形;
②如圖4,由題意和①可知,菱形MNPQ邊上的高是3,故當(dāng)菱形MNPQ的邊長(zhǎng)越長(zhǎng)時(shí),其面積越大,由圖4可知,當(dāng)點(diǎn)M與點(diǎn)A重合、點(diǎn)P與點(diǎn)C重合時(shí),邊長(zhǎng)MQ=AQ=QC,此時(shí)面積最大,
設(shè)AQ=QP=a,則BQ=BC-QC=8-a,
∵在Rt△ABQ中,AQ2=AB2+BQ2,
∴,解得: ,
∴菱形MNPQ的最大面積為: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y= x2+1(如圖所示).
(1)填空:拋物線的頂點(diǎn)坐標(biāo)是( , ),對(duì)稱(chēng)軸是;
(2)已知y軸上一點(diǎn)A(0,2),點(diǎn)P在拋物線上,過(guò)點(diǎn)P作PB⊥x軸,垂足為B.若△PAB是等邊三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,點(diǎn)M在直線AP上.在平面內(nèi)是否存在點(diǎn)N,使四邊形OAMN為菱形?若存在,直接寫(xiě)出所有滿足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E. F. G、H分別是邊AB、BC、CD、DA的中點(diǎn).
(1)判斷四邊形EFGH的形狀,并說(shuō)明你的理由;
(2)連接BD和AC,當(dāng)BD、AC滿足何條件時(shí),四邊形EFGH是正方形?證明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小米是一個(gè)愛(ài)動(dòng)腦筋的孩子,他用如下方法作∠AOB的角平分線: 作法:如圖,
⑴在射線OA上任取一點(diǎn)C,過(guò)點(diǎn)C作CD∥OB;
⑵以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作弧,交CD于點(diǎn)E;
⑶作射線OE.
所以射線OE就是∠AOB的角平分線.請(qǐng)回答:小米的作圖依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)xOy中,直線y=kx+1(k≠0)與雙曲線y= (m≠0)的一個(gè)交點(diǎn)為A(﹣2,3),與x軸交于點(diǎn)B.
(1)求m的值和點(diǎn)B的坐標(biāo);
(2)點(diǎn)P在y軸上,點(diǎn)P到直線y=kx+1(k≠0)的距離為 ,直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)市委和市政府“綠色環(huán)保,節(jié)能減排”的號(hào)召,幸福商場(chǎng)用3300元購(gòu)進(jìn)甲、乙兩種節(jié)能燈共計(jì)100只,很快售完.這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:
進(jìn)價(jià)(元/只) | 售價(jià)(元/只) | |
甲種節(jié)能燈 | 30 | 40 |
甲種節(jié)能燈 | 35 | 50 |
(1)求幸福商場(chǎng)甲、乙兩種節(jié)能燈各購(gòu)進(jìn)了多少只?
(2)全部售完100只節(jié)能燈后,商場(chǎng)共計(jì)獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)第一次用10000元購(gòu)進(jìn)甲、乙兩種商品,銷(xiāo)售完成后共獲利2200元,其中甲種商品每件進(jìn)價(jià)60元,售價(jià)70元;乙種商品每件進(jìn)價(jià)50元,售價(jià)65元.
(1)求該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品各多少件?
(2)商場(chǎng)第二次以原進(jìn)價(jià)購(gòu)進(jìn)甲、乙兩種商品,且購(gòu)進(jìn)甲、乙商品的數(shù)量分別與第一次相同,甲種商品按原售價(jià)出售,而乙種商品降價(jià)銷(xiāo)售,要使第二次購(gòu)進(jìn)的兩種商品全部售出后,獲利不少于1800元,乙種商品最多可以降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,BC=6cm.射線 AG∥BC,點(diǎn) E 從點(diǎn) A 出發(fā)沿射線 AG 以 2cm/s 的速度運(yùn)動(dòng),當(dāng)點(diǎn) E 先出發(fā) 1s 后,點(diǎn) F 也從點(diǎn) B 出發(fā)沿射線 BC 以 cm/s 的速度運(yùn)動(dòng),分別連結(jié) AF,CE.設(shè)點(diǎn) F 運(yùn)動(dòng)時(shí)間為 t(s),其中 t>0.
(1)當(dāng) t 為何值時(shí),∠BAF<∠BAC;
(2)當(dāng) t 為何值時(shí),AE=CF;
(3)當(dāng) t 為何值時(shí),S△ABF+S△ACE<S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在□ABCD中,E,F(xiàn)分別在BC,AD上,若想使四邊形AFCE為平行四邊形,須添加一個(gè)條件,這個(gè)條件可以是( )
①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE。
A. ①或② B. ②或③ C. ③或④ D. ①或③或④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com