【題目】我們定義一種新函數(shù):形如,且)的函數(shù)叫做“鵲橋”函數(shù).小麗同學(xué)畫(huà)出了“鵲橋”函數(shù)y=|x2-2x-3|的圖象(如圖所示),并寫(xiě)出下列五個(gè)結(jié)論:①圖象與坐標(biāo)軸的交點(diǎn)為;②圖象具有對(duì)稱性,對(duì)稱軸是直線;③當(dāng)時(shí),函數(shù)值值的增大而增大;④當(dāng)時(shí),函數(shù)的最小值是0;⑤當(dāng)時(shí),函數(shù)的最大值是4.其中正確結(jié)論的個(gè)數(shù)是______.

【答案】4

【解析】

坐標(biāo)都滿足函數(shù),∴①是正確的;從圖象可以看出圖象具有對(duì)稱性,對(duì)稱軸可用對(duì)稱軸公式求得是直線,②也是正確的;

根據(jù)函數(shù)的圖象和性質(zhì),發(fā)現(xiàn)當(dāng)時(shí),函數(shù)值值的增大而增大,因此③也是正確的;函數(shù)圖象的最低點(diǎn)就是與軸的兩個(gè)交點(diǎn),根據(jù),求出相應(yīng)的的值為,因此④也是正確的;從圖象上看,當(dāng),函數(shù)值要大于當(dāng)時(shí)的,因此⑤時(shí)不正確的;逐個(gè)判斷之后,可得出答案.

解:①∵,坐標(biāo)都滿足函數(shù),∴①是正確的;

②從圖象可知圖象具有對(duì)稱性,對(duì)稱軸可用對(duì)稱軸公式求得是直線,因此②也是正確的;

③根據(jù)函數(shù)的圖象和性質(zhì),發(fā)現(xiàn)當(dāng)時(shí),函數(shù)值值的增大而增大,因此③也是正確的;

④函數(shù)圖象的最低點(diǎn)就是與軸的兩個(gè)交點(diǎn),根據(jù),求出相應(yīng)的的值為,因此④也是正確的;

⑤從圖象上看,當(dāng),函數(shù)值要大于當(dāng)時(shí)的,因此⑤時(shí)不正確的;

故答案是:4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在反比例函數(shù)y=x0)的圖象上,ABy軸于點(diǎn)B,點(diǎn)Cx軸正半軸上,且OC=2AB,點(diǎn)E在線段AC上,且AE=3EC,點(diǎn)DOB的中點(diǎn),若△ADE的面積為6,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線和拋物線都經(jīng)過(guò)點(diǎn)A1,0),B,且當(dāng)時(shí),二次函數(shù)的值為

1)求的值和拋物線的解析式;

2)求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=mx2+2mx3x軸交于Ax1,0),Bx2,0)兩點(diǎn),與y軸交于點(diǎn)C,且x2x1=4

1)求拋物線的解析式;

2)求拋物線的對(duì)稱軸上存在一點(diǎn)P,使PA+PC的值最小,求此時(shí)點(diǎn)P的坐標(biāo);

3)點(diǎn)M是拋物線上的一動(dòng)點(diǎn),且在第三象限.

①當(dāng)M點(diǎn)運(yùn)動(dòng)到何處時(shí),AMB的面積最大?求出AMB的最大面積及此時(shí)點(diǎn)M的坐標(biāo).

②當(dāng)M點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形AMCB的面積最大?求出四邊形AMCB的最大面積及此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如圖1,DEABC的邊BC上,若ADE是等邊三角形則稱ABC可內(nèi)嵌,ADE叫做ABC的內(nèi)嵌三角形.

1)直角三角形______可內(nèi)嵌.(填寫(xiě)一定、一定不不一定

2)如圖2,在ABC中,∠BAC=120°ADEABC的內(nèi)嵌三角形,試說(shuō)明AB2=BDBC是否成立?如果成立,請(qǐng)給出證明;如果不一定成立,請(qǐng)舉例說(shuō)明.

3)在(2)的條件下,如果AB=1,AC=2,求ABC的內(nèi)嵌ADE的邊長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,AB為⊙O直徑,AB=12,AD平分∠BAC,交BC于點(diǎn) E,交⊙O于點(diǎn)D,連接BD.

1)求證:BAD=CBD;

2)若∠AEB=125°,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年某市為創(chuàng)評(píng)全國(guó)文明城市稱號(hào),周末團(tuán)市委組織志愿者進(jìn)行宣傳活動(dòng).班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過(guò)抽簽的方式確定2名女生去參加.

抽簽規(guī)則:將4名女班干部姓名分別寫(xiě)在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機(jī)抽取一張卡片,記下姓名,再?gòu)氖S嗟?/span>3張卡片中隨機(jī)抽取第二張,記下姓名.

(1)該班男生小剛被抽中 事件,小悅被抽中 事件(不可能必然隨機(jī)”);第一次抽取卡片小悅被抽中的概率為 ;

(2)試用畫(huà)樹(shù)狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出小惠被抽中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊CDRtEFG的直角邊EF重合,將正方形ABCD1cm/s的速度沿FE方向移動(dòng),在移動(dòng)過(guò)程中,邊CD始終與邊EF重合(移動(dòng)開(kāi)始時(shí)點(diǎn)C與點(diǎn)F重合).連接AE,過(guò)點(diǎn)CAE的平行線交直線EG于點(diǎn)H,連接HD.已知正方形ABCD的邊長(zhǎng)為1cmEF=4cm,設(shè)正方形移動(dòng)時(shí)間為xs),線段EH的長(zhǎng)為ycm),其中0≤x≤2.5

1)當(dāng)x=2時(shí),AE的長(zhǎng)為 ;

2)試求出y關(guān)于x的函數(shù)關(guān)系式,并求出EHDADE的面積之差;

3)當(dāng)正方形ABCD移動(dòng)時(shí)間x= 時(shí),線段HD所在直線經(jīng)過(guò)點(diǎn)B

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:

(1)每千克核桃應(yīng)降價(jià)多少元?

(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?

查看答案和解析>>

同步練習(xí)冊(cè)答案