精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點EF、GH分別是四邊形ABCD的邊AB、BC、CDDA的中點.

1)如果圖中線段都可畫成有向線段,那么在這些有向線段所表示的向量中,與向量相等的向量是   ;

2)設,.試用向量,表示下列向量:   ;   

3)求作:.(請在原圖上作圖,不要求寫作法,但要寫出結論)

【答案】1;(2+、+;(3)如圖所示見解析.

【解析】

1)由中位線定理得EFAC、EF=AC,HGAC、HG=AC,從而知EF=HG,且EFHG,根據相等向量的定義可得;

2)由可得;

3)由GDC中點知,從而得=,據此根據三角形法則作圖即可得.

1E、FAB、BC的中點,H、GDA、DC的中點,

EFAC、EFACHGAC、HGAC,

EFHG,且EFHG,

,

故答案為:

2)由圖知,

,

故答案為:;

3)如圖所示:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】太倉港區(qū)道路綠化工程工地有大量貨物需要運輸,某車隊有載重量為8噸和10噸的卡車共15輛,所有車輛運輸一次能運輸128噸貨物.

(1)求該車隊載重量為8噸、10噸的卡車各有多少輛?

(2)隨著工程的擴大,車隊需要一次運輸貨物170噸以上,為了完成任務,車隊準備增購這兩種卡車共5輛(兩種車都購買),請寫出所有可能的購車方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。

根據以上信息,解答下列問題:
(1)設租車時間為 小時,租用甲公司的車所需費用為 元,租用乙公司的車所需費用為 元,分別求出 , 關于 的函數表達式;
(2)請你幫助小明計算并選擇哪個出游方案合算。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“低碳環(huán)保,綠色出行”的理念得到廣大群眾的接受,越來越多的人再次選擇自行車作為出行工具,小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分鐘)的關系如圖,請結合圖象,解答下列問題:
(1)a= , b= , m= ;
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;
(3)在(2)的條件下,爸爸自第二次出發(fā)至到達圖書館前,何時與小軍相距100米?
(4)若小軍的行駛速度是v米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請直接寫出v的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某班級45名同學自發(fā)籌集到1700元資金,用于初中畢業(yè)時各項活動的經費.通過商議,決定拿出不少于544元但不超過560元的資金用于請專業(yè)人士拍照,其余資金用于給每名同學購買一件文化衫或一本制作精美的相冊作為紀念品.已知每件文化衫28元,每本相冊20元.
(1)適用于購買文化衫和相冊的總費用為W元,求總費用W(元)與購買的文化衫件數t(件)的函數關系式.
(2)購買文化衫和相冊有哪幾種方案?為了使拍照的資金更充足,應選擇哪種方案,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,EF 過平行四邊形 ABCD 對角線的交點 O,交 AD E,交 BC F,若平行四邊形 ABCD 的周長為32,OE2,則四邊形 ABFE 的周長為__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形 ABCD 的對角線 ACBD 交于 O 點,AEBD,∠AED=∠AOD,連接 OE

1)求證:AEOB

2)求證:四邊形 CDEO 是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若兩條拋物線的頂點相同,則稱它們?yōu)椤坝押脪佄锞”,拋物線C1:y1=﹣2x2+4x+2與C2:u2=﹣x2+mx+n為“友好拋物線”.

(1)求拋物線C2的解析式.
(2)點A是拋物線C2上在第一象限的動點,過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設拋物線C2的頂點為C,點B的坐標為(﹣1,4),問在C2的對稱軸上是否存在點M,使線段MB繞點M逆時針旋轉90°得到線段MB′,且點B′恰好落在拋物線C2上?若存在求出點M的坐標,不存在說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,將△ABCC點按逆時針方向旋轉α角(0°<α<90°)得到△DEC,設CDABF,連接AD,當旋轉角α度數為____________,△ADF是等腰三角形.

查看答案和解析>>

同步練習冊答案