【題目】為更新樹木品種,某植物園計(jì)劃購進(jìn)甲、乙兩個(gè)品種的樹苗栽植培育若計(jì)劃購進(jìn)這兩種樹苗共41棵,其中甲種樹苗的單價(jià)為6元/棵,購買乙種樹苗所需費(fèi)用y(元)與購買數(shù)量x(棵)之間的函數(shù)關(guān)系如圖所示.
(1)求出y與x的函數(shù)關(guān)系式;
(2)若在購買計(jì)劃中,乙種樹苗的數(shù)量不超過35棵,但不少于甲種樹苗的數(shù)量.請?jiān)O(shè)計(jì)購買方案,使總費(fèi)用最低,并求出最低費(fèi)用.
【答案】(1); (2) 當(dāng)購買甲種樹苗20棵,乙種樹苗21棵時(shí),使總費(fèi)用最低,最低費(fèi)用是286.4元
【解析】
(1)分兩種情況:①當(dāng)0<x≤20時(shí),②當(dāng)x>20時(shí),根據(jù)題意列出y與x的函數(shù)關(guān)系式即可;
(2)列式求出總費(fèi)用,再根據(jù)一次函數(shù)的性質(zhì),求出總費(fèi)用的最小值即可.
解:(1)設(shè)當(dāng)0<x≤20時(shí),y與x的函數(shù)關(guān)系式為y=kx,
20k=160,得k=8,
即當(dāng)0<x≤20時(shí),y與x的函數(shù)關(guān)系式為y=8x,
設(shè)當(dāng)x>20時(shí),y與x的函數(shù)關(guān)系式是y=ax+b,
,
得,
即當(dāng)x>20時(shí),y與x的函數(shù)關(guān)系式是y=6.4x+32,
由上可得y與x的函數(shù)關(guān)系式為:y=;
(2)∵購買乙種樹苗x棵,
∴購買甲種樹苗(41﹣x)棵,
∵在購買計(jì)劃中,乙種樹苗的數(shù)量不超過35棵,但不少于甲種樹苗的數(shù)量,
∴41﹣x≤x≤35,
解得,20.5≤x≤35,
設(shè)購買樹苗的總費(fèi)用為w元,
∵20.5≤x≤35且x為整數(shù),
∴w=(6.4x+32)+6(41﹣x)=0.4x+278,
∴當(dāng)x=21時(shí),w取得最小值,此時(shí)w=286.4,41﹣x=20,
答:當(dāng)購買甲種樹苗20棵,乙種樹苗21棵時(shí),使總費(fèi)用最低,最低費(fèi)用是286.4元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1與CD交于點(diǎn)O,則圖中陰影部分的面積是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)為邊的中點(diǎn).
(1)尺規(guī)作圖:作出以為直徑的圓交于點(diǎn),連接,.(保留作圖痕跡,不寫作法)
(2)求證:是圓的切線.
(3)當(dāng) 時(shí),四邊形是平行四邊形,此時(shí),四邊形的形狀為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小紅為了更直觀了解“物體質(zhì)量”的概念,各選五個(gè)雞蛋稱重,以每個(gè)為標(biāo)準(zhǔn),大于或等于即為達(dá)標(biāo),超過標(biāo)準(zhǔn)部分的克數(shù)記為正數(shù),不足標(biāo)準(zhǔn)部分的克數(shù)記為負(fù)數(shù).小明所統(tǒng)計(jì)的數(shù)據(jù)為實(shí)際稱重讀數(shù),小紅為記錄數(shù)據(jù),把所得數(shù)據(jù)整理成如下統(tǒng)計(jì)表(單位:).
序號 數(shù)據(jù) 姓名 | 1 | 2 | 3 | 4 | 5 |
小明 | 48 | 50 | 49 | 51 | |
小紅 | 2 | 1 |
經(jīng)過統(tǒng)計(jì)發(fā)現(xiàn),小明所選雞蛋質(zhì)量的平均數(shù)為,小紅所選雞蛋質(zhì)量的眾數(shù)為,根據(jù)以上信息:
(1)填空: , ;
(2)通過計(jì)算說明,小明和小紅哪個(gè)選取的雞蛋大小更均勻,請說明理由;
(3)現(xiàn)從小明和小紅所選取的雞蛋里各隨機(jī)挑一個(gè),這兩個(gè)雞蛋質(zhì)量都達(dá)標(biāo)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),ABCD的邊AB在x軸上,頂點(diǎn)D在y軸的正半軸上,點(diǎn)C在第一象限.將△AOD沿y軸翻折,使點(diǎn)A落在x軸上的點(diǎn)E處,點(diǎn)B恰好為OE的中點(diǎn),DE與BC交于點(diǎn)F.若y=(k≠0)圖象經(jīng)過點(diǎn)C,且S△BEF=,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間x(單位:h)變化的圖象如圖所示,根據(jù)圖象信息,下列說法:①兩人相遇前,甲速度一直小于乙速度;②出發(fā)后1小時(shí),兩人行程均為10km;③出發(fā)后1.5小時(shí),甲的行程比乙多3km;④甲比乙先到達(dá)終點(diǎn).其中正確的說法是_________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】建立模型:如圖1,已知△ABC,AC=BC,∠C=90°,頂點(diǎn)C在直線l上.
實(shí)踐操作:過點(diǎn)A作AD⊥l于點(diǎn)D,過點(diǎn)B作BE⊥l于點(diǎn)E,求證:△CAD≌△BCE.
模型應(yīng)用:(1)如圖2,在直角坐標(biāo)系中,直線l1:y=x+4與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,將直線l1繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達(dá)式.
(2)如圖3,在直角坐標(biāo)系中,點(diǎn)B(8,6),作BA⊥y軸于點(diǎn)A,作BC⊥x軸于點(diǎn)C,P是線段BC上的一個(gè)動點(diǎn),點(diǎn)Q(a,2a﹣6)位于第一象限內(nèi).問點(diǎn)A、P、Q能否構(gòu)成以點(diǎn)Q為直角頂點(diǎn)的等腰直角三角形,若能,請求出此時(shí)a的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(﹣1,0)(3,0)兩點(diǎn),給出的下列6個(gè)結(jié)論:
①ab<0;
②方程ax2+bx+c=0的根為x1=﹣1,x2=3;
③4a+2b+c<0;
④當(dāng)x>1時(shí),y隨x值的增大而增大;
⑤當(dāng)y>0時(shí),﹣1<x<3;
⑥3a+2c<0.
其中不正確的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是_____.①在同一平面內(nèi),a,b,c為直線,若a⊥b,b⊥c,則a∥c.②“若ac>bc,則a>b”的逆命題是真命題.③若M(a,2),N(1,b)關(guān)于x軸對稱,則a+b=﹣1.④一個(gè)多邊形的邊數(shù)增加1條時(shí),內(nèi)角和增加180°,外角和不變.⑤的整數(shù)部分是a,小數(shù)部分是b,則ab=3﹣3.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com