【題目】如圖,拋物線y=ax2+bx﹣2與x軸交于A、B兩點,與y軸交于點C,已知A(﹣1,0),且tan∠ABC=.
(1)求拋物線的解折式.
(2)在直線BC下方拋物線上一點P,當四邊形OCPB的面積取得最大值時,求此時點P的坐標.
(3)在y軸的左側(cè)拋物線上有一點M,滿足∠MBA=∠ABC,若點N是直線BC上一點,當△MNB為等腰三角形時,求點N的坐標.
【答案】(1)拋物線的解折式為y=x2﹣x﹣2;
(2)P點的坐標為(,﹣);
(3)點N的坐標為(﹣2,﹣ )或(8, )或(﹣,﹣)或(﹣,﹣).
【解析】試題分析:(1)由解析式求得C的坐標,然后根據(jù)tan∠ABC=求得OB=3,從而求得B的坐標,進而根據(jù)待定系數(shù)法即可求得解析式;
(2)過點P作y軸的平行線與BC交于點Q,與OB交于點E,設(shè)P(x,x2﹣2x﹣3),易得,直線BC的解析式為y=x﹣3則Q點的坐標為(x,x﹣3),再根據(jù)S四邊形ABPC=S△ABC+S△BPQ+S△CPQ即可得出結(jié)論.
(3)根據(jù)題意求得M的坐標,然后分三種情況討論求得即可.
解:(1)由拋物線y=ax2+bx﹣2可知C的坐標為(0,﹣2),
∴OC=2,
∵tan∠ABC==
∴OB=3,
∴B(3,0),
∵A(﹣1,0),
把A、B的坐標代入y=ax2+bx﹣2得:
解得,
∴拋物線的解折式為y=x2﹣x﹣2;
(2)過點P作y軸的平行線與BC交于點Q,與OB交于點E,
設(shè)P(x,x2﹣x﹣2),
設(shè)直線BC的解析式為y=kx+b(k≠0),
∵B(3,0),C(0,﹣2),
∴,
解得,
∴直線BC的解析式為y=x﹣2.
∴Q點的坐標為(x,x﹣2),
∴S四邊形ABPC=S△ABC+S△BPQ+S△CPQ
=ABOC+QPOE+QPEB
=×4×2+(2x﹣x2)×3
=﹣x2+3x+4
=﹣(x﹣)2+,
∴當x=時,四邊形ABPC的面積最大,最大面積為.此時P點的坐標為(,﹣).
(3)設(shè)直線AM交y軸于D,
∵∠MBA=∠ABC,
∴OD=OC=2,
∴D(0,2),
設(shè)直線AM的解析式為y=mx+2,
代入B(3,0)得0=3m+2,解得m=﹣,
∴直線AM的解析式為y=﹣x+2,
解得或,
∴M(﹣2,),
設(shè)N(x,x﹣2),>
∵BM2=(3+2)2+()2,MN2=(x+2)2+(x﹣2﹣)2,BN2=(x﹣3)2+(x﹣2)2,
當MB=BN時,N(﹣2,﹣)或(8,);
當MB=MN時,則(3+2)2+()2=(x+2)2+(x﹣2﹣)2,
整理得13x2﹣28x﹣33=0,
解得x1=3,x2=﹣,
∴N(﹣,﹣);
當BN=MN時,(x+2)2+(x﹣2﹣)2=(x﹣3)2+(x﹣2)2,
整理得10x=﹣35,
解得x=﹣
∴N(﹣,﹣);
綜上,點N的坐標為(﹣2,﹣)或(8,)或(﹣,﹣)或(﹣,﹣).
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知□ABCD,AB∥x軸,AB=6,點A的坐標為(1,﹣4),點D的坐標為(﹣3,4),點B在第四象限,點P是□ABCD邊上的一個動點.
(1)若點P在邊BC上,PD=CD,求點P的坐標.
(2)若點P在邊AB,AD上,點P關(guān)于坐標軸對稱的點Q落在直線y=x﹣1上,求點P的坐標.
(3)若點P在邊AB,AD,CD上,點G是AD與y軸的交點,如圖2,過點P作y軸的平行線PM,過點G作x軸的平行線GM,它們相交于點M,將△PGM沿直線PG翻折,當點M的對應(yīng)點落在坐標軸上時,求點P的坐標.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司以81710000元的價格中標我市城市軌道交通6號線工程,81710000用科學記數(shù)法精確到1000000,可表示為( )
A. 8.1×107 B. 8.1×108 C. 8.2×107 D. 8.2×108
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列式子中代數(shù)式的個數(shù)有( 。
﹣2x﹣5,﹣y,2y+1=4,4a4+2a2b3 , ﹣6.
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人練習賽跑,甲每秒跑7m,乙每秒跑6.5m,甲讓乙先跑5m,設(shè)x秒后甲可追上乙,則下列四個方程中不正確的是( 。
A.7x=6.5x+5
B.7x+5=6.5x
C.(7﹣6.5)x=5
D.6.5x=7x﹣5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com