【題目】如圖1,已知□ABCD,ABx軸,AB=6,點(diǎn)A的坐標(biāo)為(1,﹣4),點(diǎn)D的坐標(biāo)為(﹣3,4),點(diǎn)B在第四象限,點(diǎn)P□ABCD邊上的一個(gè)動(dòng)點(diǎn).

1)若點(diǎn)P在邊BC上,PD=CD,求點(diǎn)P的坐標(biāo).

2)若點(diǎn)P在邊AB,AD上,點(diǎn)P關(guān)于坐標(biāo)軸對稱的點(diǎn)Q落在直線y=x﹣1上,求點(diǎn)P的坐標(biāo).

3)若點(diǎn)P在邊AB,ADCD上,點(diǎn)GADy軸的交點(diǎn),如圖2,過點(diǎn)Py軸的平行線PM,過點(diǎn)Gx軸的平行線GM,它們相交于點(diǎn)M,將PGM沿直線PG翻折,當(dāng)點(diǎn)M的對應(yīng)點(diǎn)落在坐標(biāo)軸上時(shí),求點(diǎn)P的坐標(biāo).(直接寫出答案

【答案】(1)點(diǎn)P坐標(biāo)為(3,4);(2)點(diǎn)P的坐標(biāo)為(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4);(3)點(diǎn)P坐標(biāo)為(2,﹣4)或(﹣,3)或(﹣,4)或(,4).

【解析】試題分析:(1)點(diǎn)PBC上,要使PD=CD,只有PC重合;

2)首先要分點(diǎn)P在邊AB,AD上時(shí)討論,根據(jù)點(diǎn)P關(guān)于坐標(biāo)軸對稱的點(diǎn)Q”,即還要細(xì)分點(diǎn)P關(guān)于x軸的對稱點(diǎn)Q和點(diǎn)P關(guān)于y軸的對稱點(diǎn)Q”討論,根據(jù)關(guān)于x軸、y軸對稱點(diǎn)的特征(關(guān)于x軸對稱時(shí),點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)變成相反數(shù);關(guān)于y軸對稱時(shí),相反;)將得到的點(diǎn)Q的坐標(biāo)代入直線y=x-1,即可解答;

3)在不同邊上,根據(jù)圖象,點(diǎn)M翻折后,點(diǎn)M’落在x軸還是y軸,可運(yùn)用相似求解.

試題解析:(1∵CD=6點(diǎn)P與點(diǎn)C重合,點(diǎn)P的坐標(biāo)是(34).

2當(dāng)點(diǎn)P在邊AD上時(shí),由已知得,直線AD的函數(shù)表達(dá)式為:,設(shè)Pa-2a-2),且-3≤a≤1

若點(diǎn)P關(guān)于x軸對稱點(diǎn)Q1a2a+2)在直線y=x-1上,∴2a+2=a-1,解得a=-3,此時(shí)P-3,4).

若點(diǎn)P關(guān)于y軸對稱點(diǎn)Q2-a-2a-2)在直線y=x-1上,∴-2a-2=-a-1,解得a=-1,此時(shí)P-1,0).

當(dāng)點(diǎn)P在邊AB上時(shí),設(shè)Pa,-4),且1≤a≤7

若點(diǎn)P關(guān)于x軸對稱點(diǎn)Q3a,4)在直線y=x-1上,∴4=a-1,解得a=5,此時(shí)P5-4).

若點(diǎn)P關(guān)于y軸對稱點(diǎn)Q4-a,-4)在直線y=x-1上,∴-4=-a-1,解得a=3,此時(shí)P3,-4).

綜上所述,點(diǎn)P的坐標(biāo)為(-3,4)或(-10)或(5,-4)或(3,-4).

3)因?yàn)橹本ADy=-2x-2,所以G0,-2).

如圖,當(dāng)點(diǎn)PCD邊上時(shí),可設(shè)Pm,4),且-3≤m≤3,則可得M′P=PM=4+2=6,M′G=GM=|m|,易證得△OGM′∽△HM′P,則,即,則OM′=,在Rt△OGM′中,由勾股定理得,,解得m=-,則P-,4)或(4);

如下圖,當(dāng)點(diǎn)PAD邊上時(shí),設(shè)Pm-2m-2),則PM′=PM=|-2m|,GM′=MG=|m|,易證得△OGM′∽△HM′P,則,即,則OM′=,在Rt△OGM′中,由勾股定理得,,整理得m= -,則P-3);

如下圖,當(dāng)點(diǎn)PAB邊上時(shí),設(shè)Pm,-4),此時(shí)M′y軸上,則四邊形PM′GM是正方形,所以GM=PM=4-2=2,則P2,-4).

綜上所述,點(diǎn)P的坐標(biāo)為(2,-4)或(-3)或(-,4)或(4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】時(shí)鐘的時(shí)針經(jīng)過1小時(shí),旋轉(zhuǎn)的角度為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明有兩根長度分別為4cm9cm的木棒,他想再取一根木棒,并充分利用這三根木棒釘一個(gè)三角形木框,則小明選取的第三根木棒長度可以是( 。

A. 5cmB. 9cmC. 13cmD. 17cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若A(a,b)在第二、四象限的角平分線上,a與b的關(guān)系是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解同學(xué)們課外閱讀的情況,現(xiàn)對初三某班進(jìn)行了我最喜歡的課外書籍類別的問卷調(diào)查,用A,表示小說類書籍,B表示文學(xué)類書籍,C表示傳記類書籍,D表示藝術(shù)類書籍.根據(jù)問卷調(diào)查統(tǒng)計(jì)資料繪制了如下兩幅不完整的統(tǒng)計(jì)圖

請根據(jù)統(tǒng)計(jì)圖提供的信息解答以下問題:

1本次問卷調(diào)查,共調(diào)查了   名學(xué)生.

2請補(bǔ)全條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖中表示B的扇形圓心角為   度.

3該班有40人,請通過計(jì)算估計(jì)這個(gè)班喜歡傳記類書籍的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解全校七年級300名學(xué)生的視力情況,駱老師從中抽查了50名學(xué)生的視力情況、針對這個(gè)問題,下面說法正確的是( )

A. 300名學(xué)生是總體B. 每名學(xué)生是個(gè)體

C. 50名學(xué)生的視力情況是所抽取的一個(gè)樣本D. 這個(gè)樣本容量是300

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx2x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,已知A1,0),且tanABC=.

1)求拋物線的解折式.

2)在直線BC下方拋物線上一點(diǎn)P,當(dāng)四邊形OCPB的面積取得最大值時(shí),求此時(shí)點(diǎn)P的坐標(biāo).

3)在y軸的左側(cè)拋物線上有一點(diǎn)M,滿足∠MBA=ABC,若點(diǎn)N是直線BC上一點(diǎn),當(dāng)MNB為等腰三角形時(shí),求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=k1x+6與反比例函數(shù)y2=相交于AB,與x軸交于點(diǎn)C,過點(diǎn)BBDx軸于點(diǎn)D,已知sinDBC=,OCCD=31

1)求y1y2的解析式;

2)連接OA,OB,求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元.市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個(gè))與銷售單價(jià)x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).

設(shè)這種雙肩包每天的銷售利潤為w元.

(1)求w與x之間的函數(shù)解析式;

(2)這種雙肩包銷售單價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?

(3)如果物價(jià)部門規(guī)定這種雙肩包的銷售單價(jià)不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊答案