【題目】如圖:在六邊形ABCDEF中,AFCD,ABDE,BAF=100°,BCD=120°.

求∠ABC和∠D的度數(shù).

【答案】CDE=100°;ABC=140°.

【解析】

連接AD,由AFCD得出∠FAD=ADC,由ABDE得出∠BAD=ADE,故可得出∠CDE=BAF=100°,FAD+BAD=ADC+BAD=100°,再由四邊形內(nèi)角和定理即可得出∠ABC的度數(shù).

解:連接AD

AFCD,ABDE,

∴∠FAD=ADC,BAD=ADE,

∴∠BAF=CDE=100°

∵∠ABC+DCB+BAD+ADC=360°,

又∵∠FAB=FAD+BAD=ADC+BAD=100°,

∴∠ABC=360°-120°-100°=140°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平面直角坐標(biāo)系xOy中,函數(shù)y1(x0)的圖象與一次函數(shù)y2kxk的圖象的交點(diǎn)為A(m,2)

(1)求一次函數(shù)的解析式;

(2)設(shè)一次函數(shù)ykxk的圖象與y軸交于點(diǎn)B,若點(diǎn)Px軸上一點(diǎn),且滿足PAB的面積是6,請(qǐng)寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某實(shí)驗(yàn)學(xué)校校友會(huì)在今年開(kāi)學(xué)初,到新華書店采購(gòu)文學(xué)名著和自然科學(xué)兩類圖書.經(jīng)了解,購(gòu)買30本文學(xué)名著和50本自然科學(xué)書共需2350元,20本文學(xué)名著比20本自然科學(xué)書貴500元.

1)求每本文學(xué)名著和自然科學(xué)書的單價(jià).

2)若該校校友會(huì)要求購(gòu)買自然科學(xué)書比文學(xué)名著多30本,總費(fèi)用不超過(guò)2400元,請(qǐng)求出至多購(gòu)買文學(xué)名著多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓柱形容器中,高為1.2m,底面周長(zhǎng)為1m,在容器內(nèi)壁離容器底部0.3m的點(diǎn)B處有一蚊子,此時(shí)一只壁虎正好在容器外壁,離容器上沿0.3m與蚊子相對(duì)的點(diǎn)A處,求壁虎捕捉蚊子的最短距離.(容器厚度忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(﹣3,0)、B(0,4),對(duì)△OAB連續(xù)作翻轉(zhuǎn)變換,依次得到△1、△2、△3、△4…,則△23中的的坐標(biāo)為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為培養(yǎng)學(xué)生的特長(zhǎng)愛(ài)好,提髙學(xué)生的綜合素質(zhì),某校音樂(lè)特色學(xué)習(xí)班準(zhǔn)備從京東商城里一次性購(gòu)買若干個(gè)尤克里里和豎笛(每個(gè)尤克里里的價(jià)格相同,每個(gè)豎笛的價(jià)格相同),購(gòu)買2個(gè)豎笛和1個(gè)尤克里里共需290元;豎笛單價(jià)比尤克里里單價(jià)的一半少25元.

(1)求豎笛和尤克里里的單價(jià)各是多少元?

(2)根據(jù)學(xué)校實(shí)際情況,需一次性購(gòu)買豎笛和尤克里里共20個(gè),但要求購(gòu)買豎笛和尤克里里的總費(fèi)用不超過(guò)3450元,則該校最多可以購(gòu)買多少個(gè)尤克里里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=﹣x+m經(jīng)過(guò)點(diǎn)A20),交y軸于點(diǎn)B.點(diǎn)Dx軸上一點(diǎn),且SADB1

1)求m的值;

2)求線段OD的長(zhǎng);

3)當(dāng)點(diǎn)E在直線AB上(點(diǎn)E與點(diǎn)B不重合),且∠BDO=∠EDA,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,在銳角△ABC中,CEAB于點(diǎn)E,點(diǎn)D在邊AC上,聯(lián)結(jié)BDCE于點(diǎn)F,且EF·FC=FB·DF.

1)求證:BDAC

2)聯(lián)結(jié)AF,求證:AF·BE=BC·EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣在實(shí)施“村村通”工程中,決定在A、B兩村之間修筑一條公路,甲、乙兩個(gè)工程隊(duì)分別從AB兩村同時(shí)相向開(kāi)始修筑.施工期間,乙隊(duì)因另有任務(wù)提前離開(kāi),余下的任務(wù)由甲隊(duì)單獨(dú)完成,直到道路修通.下圖是甲、乙兩個(gè)工程隊(duì)所修道路的長(zhǎng)度y(米)與修筑時(shí)間x(天)之間的函數(shù)圖像,請(qǐng)根據(jù)圖像所提供的信息,求該公路的總長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案