【題目】如圖,已知A-3,-3),B-2,-1),C-1,-2是直角坐標平面上的三點.

1)請畫出ABC關于x軸對稱的ABC;

2)請寫出B點關于y軸對稱的點B2的坐標;若將點B向上平移h個單位欲使其落在A1B1C1內(nèi)部,指出h的取值范圍.

【答案】(1)答案見解析;(2)B2(2,-1),2<h<

【解析】試題分析:(1)根據(jù)網(wǎng)格結(jié)構找出點A、BC關于x軸的對稱點A1、B1、C1的位置,然后順次連接即可;

2)根據(jù)關于y軸對稱的點的橫坐標互為相反數(shù),縱坐標相同解答;再根據(jù)圖形確定出點BB1A1C1的中點的距離,即可得解.

試題解析:解:(1A1B1C1如圖所示;

2)點B2的坐標為(2﹣1),由圖可知,點BB1A1C1的中點的距離分別為2,3.5,所以h的取值范圍為2h3.5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列調(diào)查中,適宜采用全面調(diào)查(普查)方式的是( )

A. 對我市市民實施低碳生活情況的調(diào)查

B. 對我國首架大型民用飛機零部件的檢查

C. 對全國中學生心理健康現(xiàn)狀的調(diào)查

D. 對市場上的冰淇淋質(zhì)量的調(diào)查

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),AB∥CD,猜想∠BPD與∠B、∠D的關系,說出理由.

解:猜想∠BPD+∠B+∠D=360°

理由:過點P作EF∥AB,

∴∠B+∠BPE=180°(兩直線平行,同旁內(nèi)角互補)

∵AB∥CD,EF∥AB,

∴EF∥CD,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.)

∴∠EPD+∠D=180°(兩直線平行,同旁內(nèi)角互補)

∴∠B+∠BPE+∠EPD+∠D=360°

∴∠B+∠BPD+∠D=360°

(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關系,并說明理由.

(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關系,不需要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個斜坡上的點D處,某校數(shù)學課外興趣小組的同學正在測量旗桿的高度,在旗桿的底部A處測得點D的仰角為15°,AC=10米,又測得BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(1.7,結(jié)果精確到個位).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為6的正方形繞點按順時針方向旋轉(zhuǎn)后得到正方形,于點,則____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩座倉庫分別有農(nóng)用車12輛和6輛.現(xiàn)在需要調(diào)往10輛,需要調(diào)往8輛,已知從甲倉庫調(diào)運一輛農(nóng)用車到縣和縣的運費分別為40元和80元;從乙倉庫調(diào)運一輛農(nóng)用車到縣和縣的運費分別為30元和50元.

1)設乙倉庫調(diào)往縣農(nóng)用車輛,求總運費關于的函數(shù)關系式;

2)若要求總運費不超過900元,問共有幾種調(diào)運方案?試列舉出來.

3)求出總運費最低的調(diào)運方案,最低運費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1如圖①,在等邊ABCMBC邊上的任意一點(不含端點B,C),連結(jié)AM,AM為邊作等邊AMN連結(jié)CN.求證ACN=∠ABC

【類比探究】

2)如圖②,在等邊ABC,MBC延長線上的任意一點(不含端點C),其它條件不變,(1)中結(jié)論∠ACN=∠ABC還成立嗎?請說明理由

【拓展延伸】

3)如圖③在等腰ABC,BA=BCMBC上的任意一點(不含端點B、C),連結(jié)AM,AM為邊作等腰AMN使頂角∠AMN=∠ABC連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關系,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,直線y1=2x﹣2與坐標軸交于A,B兩點,與雙曲線y2=x>0)交于點C,過點CCDx軸,垂足為D,且OA=AD,則以下結(jié)論:①當x>0時,y1x的增大而增大,y2x的增大而減;②;③當0<x<2時,y1y2;④如圖,當x=4時,EF=4.其中正確結(jié)論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】7分)某中學九年級學生在學習直角三角形的邊角關系組織開展測量物體高度的實踐活動.要測量學校一幢教學樓AB的高度如圖所示,他們先在點C測得教學樓的頂部A的仰角為36.2°然后向教學樓前進10米到達點D,又測得點A的仰角為45°.請你根據(jù)這些數(shù)據(jù)求出這幢教學樓AB的高度.結(jié)果精確到1米)

【參考數(shù)據(jù)sin36.2°=0.59,cos36.2°=0.81,tan36.2°=0.73

查看答案和解析>>

同步練習冊答案