【題目】1、圖2中,點(diǎn)B為線段AE上一點(diǎn),△ABC與△BED都是等邊三角形.

(1)如圖1,求證:AD=CE.

(2)如圖2,設(shè)CEAD交于點(diǎn)F,連接BF.

①求證:∠CFA=60°.

②求證:CF+BF=AF.

【答案】(1)證明見(jiàn)解析;(2)①證明見(jiàn)解析;②證明見(jiàn)解析.

【解析】

(1)如圖1,利用等邊三角形性質(zhì)得:BD=BEAB=BC,∠ABC=DBE=60°,再證∠ABD=CBE,根據(jù)SAS證明△ABD≌△CBE得出結(jié)論;

(2)①如圖2,利用(1)中的全等得:∠BCE=DAB,根據(jù)兩次運(yùn)用外角定理可得結(jié)論;

②如圖3,作輔助線,截取FG=CF,連接CG,證明△CFG是等邊三角形,并證明△ACG≌△BCF,由線段的和得出結(jié)論.

證明:(1)如圖1,∵△ABC與△BED都是等邊三角形,

BD=BE,AB=BC,∠ABC=DBE=60°,

∴∠ABC+CBD=DBE+CBD

即∠ABD=CBE,

∴△ABD≌△CBE(SAS)

AD=CE,

(2)①如圖2,由(1)得:△ABD≌△CBE,

∴∠BCE=DAB

∵∠ABC=BCE+CEB=60°,

∴∠ABC=DAB+CEB=60°,

∵∠CFA=DAB+CEB

∴∠CFA=60°,

②如圖3,在AF上取一點(diǎn)G,使FG=CF,連接CG,

∵∠AFC=60°,

∴△CGF是等邊三角形,

∴∠GCF=60°CG=CF,

∴∠GCB+BCE=60°,

∵∠ACB=60°

∴∠ACG+GCB=60°,

∴∠ACG=BCE

AC=BC,

∴△ACG≌△BCF,

AG=BF

AF=AG+GF,

AF=BF+CF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀并回答問(wèn)題.

求一元二次方程ax2+bx+c=0(a0)的根(用配方法).

解:ax2+bx+c=0,

a0,x2+x+=0,第一步

移項(xiàng)得:x2+x=﹣,第二步

兩邊同時(shí)加上(2,得x2+x+____2=﹣+2,第三步

整理得:(x+2=直接開(kāi)方得x+=±,第四步

x=,

x1=,x2=,第五步

上述解題過(guò)程是否有錯(cuò)誤?若有,說(shuō)明在第幾步,指明產(chǎn)生錯(cuò)誤的原因,寫(xiě)出正確的過(guò)程;若沒(méi)有,請(qǐng)說(shuō)明上述解題過(guò)程所用的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究活動(dòng)一

如圖1,正方形ABCD和正方形QMNP,M=B,M是正方形ABCD的對(duì)稱中心,MNABF,QMADE,線段ME與線段MF的數(shù)量關(guān)系是   .(不必證明,直接給出結(jié)論即可)

探究活動(dòng)二:

如圖2,將上題中的正方形改為矩形,且AB=mBC,其他條件不變(矩形ABCD和矩形QMNP,M=B,M是矩形ABCD的對(duì)稱中心,MNABF,QMADE),探究并證明線段ME與線段MF的數(shù)量關(guān)系;

探究活動(dòng)三:

根據(jù)前面的探索和圖3,平行四邊形ABCD和平行四邊形QMNP中,若AB=mBC,M=B,M是平行四邊形ABCD的對(duì)稱中心,MNABF,QMADE,請(qǐng)?zhí)骄坎⒆C明線段ME與線段MF的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下面的證明過(guò)程補(bǔ)充完整.

已知:如圖,的角平分線,點(diǎn)上,點(diǎn)延長(zhǎng)線上,于點(diǎn),且

求證:

證明:在中,

).

(已知),

的角平分線,

).

(等量代換).

).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)(k≠0)的圖象經(jīng)過(guò)點(diǎn)A(1,2)和B(2,n),

(1)以原點(diǎn)O為位似中心畫(huà)出△A1B1O,使=

(2)y軸上是否存在點(diǎn)P,使得PA+PB的值最?若存在,求出P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過(guò)直線y=﹣x+3與坐標(biāo)軸的兩個(gè)交點(diǎn)A、B,與x軸的另一個(gè)交點(diǎn)為C,頂點(diǎn)為D.

(1)求拋物線的解析式;

(2)畫(huà)出拋物線的圖象;

(3)x軸上是否存在點(diǎn)N使△ADN為直角三角形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ΔABC和ΔDCE均是等邊三角形,點(diǎn)B,CE在同一條直線上,AECD交于點(diǎn)G,ACBD交于點(diǎn)F,連接FG,則下列結(jié)論: AE=BD;②AG =BF;③FGBE;④CF=CG.其中正確的結(jié)論為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠A=40°,ABC的外角∠CBD的平分線BEAC的延長(zhǎng)線于點(diǎn)E,點(diǎn)FAC延長(zhǎng)線上的一點(diǎn),連接DF.

(1)求∠CBE的度數(shù);

(2)若∠F=25°,求證:BEDF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價(jià)為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,yx滿足如下關(guān)系:

(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?

(2)設(shè)第x天生產(chǎn)的產(chǎn)品成本為P/件,P的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤(rùn)為W元,求Wx的函數(shù)關(guān)系式,并求出第幾天時(shí)利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案