【題目】如圖,在中,平分的中垂線交于點,交于點,連接.為等腰三角形,則的度數(shù)為___________;

【答案】60°.

【解析】

根據(jù)角平分線的性質可得∠DBC=ABD,再根據(jù)線段垂直平分線的性質可得BF=CF,進而可得∠FCB=24°,然后可算出∠ACB的度數(shù),再根據(jù)三角形內(nèi)角和定理即可解答.

BD平分∠ABC
∴∠DBC=ABD,
BD平分,
∴∠ABC =48°,
BC的中垂線交BC于點E,
BF=CF
∴∠FCB=FBC=24°,

∴∠BFE=90°-24°=66°,

∴∠DFC=180°-66°-66°=48°,

為等腰三角形,

∴∠DFC=DCF=48°,

∴∠ACB=DFC+FCB=48°+24°=72°,
∴∠A=180°-ACB-ABC=60°.
故答案為:60°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且ADMND,BEMNE

1)①求證圖1中△ADC≌△CEB;②證明DE=AD+BE;

2)當直線MN繞點C旋轉到圖2的位置時,請說明DE=ADBE的理由;

3)當直線MN繞點C旋轉到圖3的位置時,試問DE、ADBE又具有怎樣的等量關系?請直接寫出這個等量關系(不必說明理由)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是一張AOB=45°的紙片折疊后的圖形,P、Q分別是邊OA、OB上的點,且OP=2 cm.AOB沿PQ折疊,點O落在紙片所在平面內(nèi)的C處

(1)①當PC∥QB時,OQ= cm;

②在OB上找一點Q,使PC⊥QB(尺規(guī)作圖,保留作圖痕跡)

(2)當折疊后重疊部分為等腰三角形時,求OQ的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=CB,ABC=90°,FAB延長線上一點,點EBC上,且AE=CF

1)求證:ABE≌△CBF

2)若CAE=30°,求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ADBC,垂足是D.小莉說:當AB+BD=AC+CD時,則ABC是等腰三角形.她的說法正確嗎,如正確,請證明;如不正確,請舉反例說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點O為正方形ABCD 的中心,EAB 邊上一點,FBC邊上一點,EBF的周長等于 BC 的長.

(1)求∠EOF 的度數(shù).

(2)連接 OA、OC(如圖2).求證:AOECFO.

(3)OE=OF,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的是用4個全等的小長方形與1個小正方形密鋪而成的正方形圖案.已知該圖案的面積為49,小正方形的面積為4,若分別用x,y(x >y)表示小長方形的長和寬,則下列關系式中不正確的是( )

A. x+y=7 B. x-y=2 C. x2 +y2=25 D. 4xy+4=49

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊中,邊上一點(不含端點 ,),的外角 的平分線上一點,且

1)尺規(guī)作圖:在直線的下方,過點,作的延長線,與相交于點.

2)求證:是等邊

3)求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過兩點,與軸交于另一點

求此拋物線的解析式;

已知點在第四象限的拋物線上,求點關于直線對稱的點的坐標.

的條件下,連接,問在軸上是否存在點,使?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案