【題目】如圖,已知一次函數(shù)y=kx+b(k≠0)的圖象與x軸、y軸分別交于點A、B兩點,且與反比例函數(shù)y=的圖象在第一象限內的部分交于點C,CD垂直于x軸于點D,其中OA=OB=OD=2.
(1)直接寫出點A、C的坐標;
(2)求這兩個函數(shù)的表達式;
(3)若點P在y軸上,且S△ACP=14,求點P的坐標.
【答案】(1)A點坐標為(﹣2,0),C點坐標為(2,4);(2)反比例函數(shù)解析式為y=,一次函數(shù)解析式為y=x+2;(3)點P的坐標為(0,9)或(0,﹣5).
【解析】
(1)利用直接寫出A點坐標和B點坐標,再利用平分線分線段成比例定理計算出CD得到C點坐標;
(2)利用待定系數(shù)法求反比例函數(shù)解析式和一次函數(shù)解析式;
(3)設,利用三角形面積公式得到,然后其出t得到點P的坐標.
解:(1)∵OA=OB=OD=2.
∴A點坐標為(﹣2,0),B點坐標為(0,2),
∵,
∴OB:CD=OA:AD,
∴CD==4,
∴C點坐標為(2,4),
(2)把C(2,4)代入y=得m=2×4=8,
∴反比例函數(shù)解析式為,
把A(﹣2,0),B(0,2)代入y=kx+b得,解得,
∴一次函數(shù)解析式為y=x+2;
(3)設P(0,t),
∵S△ACP=14,
而S△PBA+S△PBC=S△PAC,
∴|t﹣2|×4=14,解得t=9或t=﹣5,
∴點P的坐標為(0,9)或(0,﹣5).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、D在⊙O上,連接AD、BC、BD、DC,若BD = CD,∠DBC = 20°,則,∠ABC =_________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,,將繞點順時針旋轉得到,當點、、三點共線時,旋轉角為,連接,交于點,下面結論:①為等腰三角形;②;③;④;⑤中,正確結論的個數(shù)是( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明與小紅玩一個游戲:一張卡片上標上數(shù)字0,另有n張質地都相同的卡片上標有數(shù)字1,2,3,…,n,將標有數(shù)字的一面朝下,小明從中任意抽取一張后放回洗勻,然后再取出一張;小紅從中任意抽取一張后不放回,直接再抽取一張.
(1)n=3時,分別求小明抽出的兩張卡片上的數(shù)積為0的概率與小紅抽出的兩張卡片上的數(shù)積為0的概率.(請用畫樹狀圖或列表的形式給出分析過程)
(2)小明抽出的兩張卡片上的數(shù)積為0的概率是__________(用n表示);小紅抽出的兩張卡片上的數(shù)積為0的概率是__________(用n表示)
(3)若小紅抽出的兩張卡片上的數(shù)積為0的概率小于,則n的值至少是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E、F分別是正方形ABCD的邊BC、CD的中點,連接AF、DE交于點P,過B作BG∥DE交AD于G,BG與AF交于點M.對于下列結論:①AF⊥DE;②G是AD的中點;③∠GBP=∠BPE;④S△AGM:S△DEC=1:4.正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O直徑,D為⊙O上一點,AT平分∠BAD交⊙O于點T,過T作AD的垂線交AD的延長線于點C.
(1)求證:CT為⊙O的切線;
(2)若⊙O半徑為2,CT=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,和均為等邊三角形,直線和直線交于點.
填空:①的度數(shù)是 ;
②線段,之間的數(shù)量關系為 .
(2)類比探究
如圖2,和均為等腰直角三角形,,,,直線和直線交于點.請判斷的度數(shù)及線段,之間的數(shù)量關系,并說明理由.
(3)解決問題
如圖3,在平面直角坐標系中,點坐標為,點為軸上任意一點,連接,將繞點逆時針旋轉至,連接,請直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D是⊙O上一點,點E時的中點,過點A作⊙O的切線交BD的延長線于點F.連接AE并延長交BF于點C.
(1)求證:AB=BC;
(2)如果AB=10.tan∠FAC=,求FC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,P為AB的中點,Q為邊CD上一動點,設DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點M、N,過Q作QE⊥AB于點E,過M作MF⊥BC于點F.
(1)當t≠1時,求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關系式,并求S的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com