【題目】如圖,AB是⊙O的直徑,∠A=∠CBD

1)求證:BC是⊙O的切線.

2)若∠C35°,AB6,求的長(結(jié)果保留π).

【答案】1)證明見解析;(2

【解析】

1)由圓周角定理得出∠ADB90°,得出∠A+ABD90°,證得∠ABC90°,即可得出BC是⊙O的切線.

(2)連接OD,可證得∠ABD=∠C35°,由圓周角定理可得∠AOD=2∠ABD=70°,再通過弧長公式計算,即可得出答案.

1)證明:∵AB是⊙O的直徑,

∴∠ADB90°,

∴∠A+ABD90°,

∵∠A=∠CBD,

∴∠CBD+ABD90°,即∠ABC90°,

BCAB,

BC是⊙O的切線.

2)解:連接OD,如圖所示:

∵∠ABC90°,

∴∠C+A90°,

又∠A+ABD90°,

∴∠ABD=∠C35°,

∴∠AOD2ABD70°

∵直徑AB6,

OA3

的長=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點,是以點為圓心,2為半徑的圓上的動點,是線段的中點,連結(jié).則線段的最大值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,設(shè)二次函數(shù)y1x2+bx+a,y2ax2+bx+1ab是實數(shù),a≠0).

1)若函數(shù)y1的對稱軸為直線x3,且函數(shù)y1的圖象經(jīng)過點(a,b),求函數(shù)y1的表達式.

2)若函數(shù)y1的圖象經(jīng)過點(r,0),其中r≠0,求證:函數(shù)y2的圖象經(jīng)過點(,0).

3)設(shè)函數(shù)y1和函數(shù)y2的最小值分別為mn,若m+n0,求mn的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角邊長為1的等腰直角三角形與邊長為2的正方形在同一水平線上,三角形沿水平線從左向右勻速穿過正方形.設(shè)穿過時間為t,正方形與三角形不重合部分的面積為s(陰影部分),則st的大致圖象為( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點C、A分別在x軸、y軸上,ABx軸,∠ACB90°,反比例函數(shù)yx0)的圖象經(jīng)過AB的中點M.若點A04)、C20),則k的值為( 。

A.16B.20C.32D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yn為常數(shù)).

1)當n1時,

①點P(﹣3m)在此函數(shù)圖象上,求m的值.

②當﹣4≤x≤3時,求此函數(shù)的最大值和最小值.

2)當xn時,若此函數(shù)的圖象與坐標軸只有兩個交點,求n的取值范圍.

3)若n0,當此函數(shù)的圖象與以A0,3)、B5,﹣2)、C(﹣5,﹣2)、D(﹣5,3)為頂點的四邊形的邊有且只有四個公共點時,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACO的直徑,PAPBO的切線,切點分別是點AB

1)如圖1,若∠BAC=25°,求∠P的度數(shù).

2)如圖2,若M是劣弧AB上一點,∠AMB=AOB,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于,交軸于,直線平行于軸,與拋物線另一個交點為

1)求拋物線的函數(shù)表達式及點D的坐標;

2)若拋物線與拋物線關(guān)于軸對稱,軸上的動點,在拋物線上是否存在一點,使得以為頂點且為邊的四邊形是平行四邊形,若存在,請求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“早黑寶”葡萄品種是我省農(nóng)科院研制的優(yōu)質(zhì)新品種,在我省被廣泛種植,鄧州市某葡萄種植基地2017年種植“早黑寶”100畝,到2019年“卓黑寶”的種植面積達到196.

1)求該基地這兩年“早黑寶”種植面積的平均增長率;

2)市場調(diào)查發(fā)現(xiàn),當“早黑寶”的售價為20/千克時,每天能售出200千克,售價每降價1元,每天可多售出50千克,為了推廣宣傳,基地決定降價促銷,同時減少庫存,已知該基地“早黑寶”的平均成本價為12/千克,若使銷售“早黑寶”每天獲利1750元,則售價應(yīng)降低多少元?

查看答案和解析>>

同步練習(xí)冊答案