【題目】如圖,在□ABCD中,AD是⊙O的弦,BC是⊙O的切線,切點為B.
(1)求證:;
(2)若AB=5,AD=8,求⊙O的半徑.
【答案】(1)證明見解析;(2)⊙O的半徑為
【解析】
(1) 連接OB,根據(jù)題意求證OB⊥AD,利用垂徑定理求證;
(2) 根據(jù)垂徑定理和勾股定理求解.
解:(1)
連接OB,交AD于點E.
∵BC是⊙O的切線,切點為B,
∴OB⊥BC.
∴∠OBC=90°
∵ 四邊形ABCD是平行四邊形
∴AD// BC
∴∠OED=∠OBC =90°
∴ OE⊥AD
又 ∵ OE過圓心O
∴
(2)∵ OE⊥AD ,OE過圓心O
∴ AE=AD=4
在Rt△ABE中,∠AEB=90°,
BE==3,
設⊙O的半徑為r,則OE=r-3
在Rt△ABE中,∠OEA=90°,
OE2+AE2 = OA2
即(r-3)2+42= r2 ∴r=
∴⊙O的半徑為
科目:初中數(shù)學 來源: 題型:
【題目】我市倡導垃圾分類投放,將日常垃圾分成四類,分別投放四種不同顏色的垃圾桶中,在“垃圾分類”模擬活動中,某同學把兩個不同類的垃圾隨意放入兩個不同顏色的垃圾筒中,則這個同學正確分類投放垃圾的概率是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某淘寶網(wǎng)店銷售臺燈,成本為每個30元.銷售大數(shù)據(jù)分析表明:當每個臺燈售價為40元時,平均每月售出600個;若售價每下降1元,其月銷售量就增加200個.
(1)若售價下降1元,每月能售出 個臺燈,若售價下降x元(),每月能售出 個臺燈.
(2)為迎接“雙十一”,該網(wǎng)店決定降價促銷,在庫存為1210個臺燈的情況下,若預計月獲利恰好為8400元,求每個臺燈的售價.
(3)月獲利能否達到9600元,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某射擊隊準備從甲、乙兩名隊員中選取一名隊員代表該隊參加比賽,特為甲、乙兩名隊員單行了一次選拔賽,要求這兩名隊員各射擊10次,比賽結束后,根據(jù)比賽成績情況,將甲,乙兩名隊員的比賽成績制成了如下的統(tǒng)計圖(表):
甲隊員的成績統(tǒng)計表:
成績(單位:環(huán)) | 7 | 8 | 9 | 10 |
次數(shù)(單位:次) | 5 | 1 | 3 | 1 |
(1)在乙隊員成績扇形統(tǒng)計圖中,求“8環(huán)”所在扇形的圓心角的度數(shù);
(2)經(jīng)過整理,得到的分析數(shù)據(jù)如表:
隊員 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 8 | 7.5 | 7 | c |
乙 | a | 8 | b | 1 |
求表中的a、b、c的值(3)根據(jù)甲、乙兩名隊員的成績情況,該射擊隊準備選派乙參加比賽,請你寫出一條射擊隊選派乙的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形的邊長為,點從點出發(fā),以的速度沿著折線運動,到達點時停止運動;點從點出發(fā),也以的速度沿著折線運動,到達點時停止運動.點、分別從點、同時出發(fā),設運動時間為.
(1)當為何值時,、兩點間的距離為.
(2)連接、交與點,
①在整個運動過程中,的最小值為______;
②當時,此時的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:我們約定,在平面直角坐標系中,經(jīng)過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫做該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.問題與探究:如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,A,C分別在x軸和y軸上,拋物線y=(x﹣a)2+b經(jīng)過B,C兩點,頂點D在正方形內部.若點D有一條特征線是y=x+2,則此拋物線的表達式是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標上1、2、3,將這兩組卡片分別放入兩個盒子中攪勻,再從中隨機抽取一張.
(1)請用畫樹狀圖的方法求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;
(2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題8分)如圖某幢大樓頂部有廣告牌CD.張老師目高MA為1.60米,他站立在離大樓45米的A處測得大樓頂端點D的仰角為30°;接著他向大樓前進14米、站在點B處,測得廣告牌頂端點C的仰角為45°.(取 ,計算結果保留一位小數(shù))
(1)求這幢大樓的高DH;
(2)求這塊廣告牌CD的高度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com