【題目】如圖,平行四邊形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,則∠DAE等于( )
A.20°
B.25°
C.30°
D.35°
【答案】A
【解析】解:∵DB=DC,∠C=70°
∴∠DBC=∠C=70°,
又∵AD∥BC,
∴∠ADE=∠DBC=70°
∵AE⊥BD
∴∠AEB=90°那么∠DAE=90°﹣∠ADE=20°
所以答案是:A.
【考點(diǎn)精析】本題主要考查了三角形的內(nèi)角和外角和等腰三角形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角)才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校學(xué)生會(huì)發(fā)現(xiàn)同學(xué)們就餐時(shí)剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤行動(dòng)”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動(dòng)的重要性,校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)就餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖.
(1)這次被調(diào)查的同學(xué)共有名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)計(jì)算在扇形統(tǒng)計(jì)圖中剩大量飯菜所對應(yīng)扇形圓心角的度數(shù);
(4)校學(xué)生會(huì)通過數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐.據(jù)此估算,該校20000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于分式的判斷,正確的是( )
A.當(dāng)x=2時(shí), 的值為零
B.無論x為何值, 的值總為正數(shù)
C.無論x為何值, 不可能得整數(shù)值
D.當(dāng)x≠3時(shí), 有意義
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ANCD中,AD=5,CD=3,在直線BC上取一點(diǎn)E,使△ADE是以DE為底的等腰三角形,過點(diǎn)D作直線AE的垂線,垂足為點(diǎn)F,則EF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等邊三角形,點(diǎn)D是BC上一點(diǎn),點(diǎn)E在CA的延長線上,連結(jié)EB、ED,且EB=ED.
(1)求證:∠DEC=∠ABE;
(2)點(diǎn)D關(guān)于直線EC的對稱點(diǎn)為M,連接EM、BM:
①依題意將圖2補(bǔ)全;
②求證:EB=BM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BD、BE分別是高和角平分線,點(diǎn)F在CA的延長線上,FH⊥BE,交BD于點(diǎn)G,交BC于點(diǎn)H;下列結(jié)論:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C,其中正確的結(jié)論有______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】母親節(jié)前夕,某淘寶店主從廠家購進(jìn)A、B兩種禮盒,已知A、B兩種禮盒的單價(jià)比為2:3,單價(jià)和為200元.
(1)求A、B兩種禮盒的單價(jià)分別是多少元?
(2)該店主購進(jìn)這兩種禮盒恰好用去9600元,且購進(jìn)A種禮盒最多36個(gè),B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進(jìn)貨方案?
(3)根據(jù)市場行情,銷售一個(gè)A種禮盒可獲利10元,銷售一個(gè)B種禮盒可獲利18元.為奉獻(xiàn)愛心,該店主決定每售出一個(gè)B種禮盒,為愛心公益基金捐款m元,每個(gè)A種禮盒的利潤不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時(shí)店主獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com