【題目】如圖:
(1)找出直線DC,AC被直線BE所截形成的同旁內(nèi)角.
(2)指出∠DEF與∠CFE是由哪兩條直線被哪一條直線所截形成的什么角.
(3)試找出圖中與∠DAC是同位角的所有角.
【答案】解:(1)∠FBC和∠CFB,∠DFB和∠FBA是直線DC,AC被直線BE所截形成的同旁內(nèi)角;
(2)∠DEF與∠CFE是由直線AG、DF被EF所截而成的內(nèi)錯角;
(3)∠DAC同位角:∠EBH,∠DCH,∠EDF,∠GEF.
【解析】(1)根據(jù)同旁內(nèi)角:兩條直線被第三條直線所截形成的角中,若兩個角都在兩直線的之間,并且在第三條直線(截線)的同旁,則這樣一對角叫做同旁內(nèi)角.
分別進行分析即可.
(2)根據(jù)內(nèi)錯角:兩條直線被第三條直線所截形成的角中,若兩個角都在兩直線的之間,并且在第三條直線(截線)的兩旁,則這樣一對角叫做內(nèi)錯角進行分析.
(3)根據(jù)同位角:兩條直線被第三條直線所截形成的角中,若兩個角都在兩直線的同側(cè),并且在第三條直線(截線)的同旁,則這樣一對角叫做同位角進行分析.
【考點精析】關(guān)于本題考查的同位角、內(nèi)錯角、同旁內(nèi)角,需要了解兩條直線被第三條直線所截形成八個角,它們構(gòu)成了同位角、內(nèi)錯角與同旁內(nèi)角;判別同位角、內(nèi)錯角或同旁內(nèi)角的關(guān)鍵是找到構(gòu)成這兩個角的“三線”,有時需要將有關(guān)的部分“抽出”或把無關(guān)的線略去不看,有時又需要把圖形補全才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系
(1)已知AB平行于CD,如a圖,當點P在AB、CD外部時,∠BPD+∠D=∠B即∠BPD=∠B﹣∠D,為什么?請說明理由.如b圖,將點P移動到AB、CD內(nèi)部,以上結(jié)論是否仍然成立?若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請說明結(jié)論;
(2)在圖b中,將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖c,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關(guān)系?(不需證明)
(3)根據(jù)(2)的結(jié)論求圖d中∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地2014年為做好“精準扶貧”,投入資金1280萬元用于異地安置,并規(guī)劃投入資金逐年增加.2016年在2014年的基礎(chǔ)上增加投入資金1600萬元,從2014年到2016年,該地投入異地安置資金的年平均增長率為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)定義一種新運算:“※”,使得a※b=a2﹣ab,例如5※3=52﹣5×3=10.若x※(2x﹣1)=﹣6,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y與x之間有下列關(guān)系:y=x2-1.顯然,當x=1時,y=0;當x=2時,y=3。在這個等式中( )
A. x是變量,y是常量
B. x是變量,y是常量
C. x是常量,y是變量
D. x是變量,y是變量
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,BF、DE相交于點A,BG交BF于點B,交AC于點C.
(1)指出ED、BC被BF所截的同位角,內(nèi)錯角,同旁內(nèi)角;
(2)指出ED、BC被AC所截的內(nèi)錯角,同旁內(nèi)角;
(3)指出FB、BC被AC所截的內(nèi)錯角,同旁內(nèi)角.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面各組數(shù)中,相等的一組是( )
A.﹣22與(﹣2)2
B. ?與( )3??
C.﹣|﹣2|與﹣(﹣2)
D.(﹣3)3與﹣33
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com