【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點(diǎn)E,AE=2,ED=4,
(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.
【答案】(1)見解析;(2)AB=.(3)直線FA與⊙O相切.
【解析】
試題分析:(1)根據(jù)AB=AC,可得∠ABC=∠C,利用等量代換可得∠ABC=∠D然后即可證明△ABE∽△ADB.
(2)根據(jù)△ABE∽△ADB,利用其對(duì)應(yīng)邊成比例,將已知數(shù)值代入即可求得AB的長.
(3)連接OA,根據(jù)BD為⊙O的直徑可得∠BAD=90°,利用勾股定理求得BD,然后再求證∠OAF=90°即可.
(1)證明:∵AB=AC,
∴∠ABC=∠C(等邊對(duì)等角),
∵∠C=∠D(同弧所對(duì)的圓周角相等),
∴∠ABC=∠D(等量代換),
又∵∠BAE=∠DAB,
∴△ABE∽△ADB,
(2)解:∵△ABE∽△ADB,
∴,
∴AB2=ADAE=(AE+ED)AE=(2+4)×2=12,
∴AB=.
(3)解:直線FA與⊙O相切,理由如下:
連接OA,∵BD為⊙O的直徑,
∴∠BAD=90°,
∴=4
BF=BO=,
∵AB=,
∴BF=BO=AB,
∴∠OAF=90°,
∴OA⊥AF,
∵AO是圓的半徑,
∴直線FA與⊙O相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若多項(xiàng)式﹣6ab+18abc+24ab2的一個(gè)因式是﹣6ab,則其余的因式是( 。
A. 1﹣3c﹣4b B. ﹣1﹣3c+4b C. 1+3c﹣4b D. ﹣1﹣3c﹣4b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方成同學(xué)看到一則材料:甲開汽車,乙騎自行車從M地出發(fā)沿一條公路勻速前往N地.設(shè)乙行駛的時(shí)間為t(h),甲乙兩人之間的距離為y(km),y與t的函數(shù)關(guān)系如圖1所示.
方成思考后發(fā)現(xiàn)了如圖1的部分正確信息:乙先出發(fā)1h;甲出發(fā)0.5小時(shí)與乙相遇.
請(qǐng)你幫助方成同學(xué)解決以下問題:
(1)分別求出線段BC,CD所在直線的函數(shù)表達(dá)式;
(2)當(dāng)20<y<30時(shí),求t的取值范圍;
(3)分別求出甲,乙行駛的路程S甲,S乙與時(shí)間t的函數(shù)表達(dá)式,并在圖2所給的直角坐標(biāo)系中分別畫出它們的圖象;
(4)丙騎摩托車與乙同時(shí)出發(fā),從N地沿同一公路勻速前往M地,若丙經(jīng)過h與乙相遇,問丙出發(fā)后多少時(shí)間與甲相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若∠1=40.4°,∠2=40°4′,則∠1與∠2的關(guān)系是( )
A、∠1=∠2 B、∠1>∠2 C、∠1<∠2 D、以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,以△ABC中的AB、AC為邊分別向外作正方形ADEB、ACGF,
連接DC、BF。(相關(guān)知識(shí)鏈接:正方形的四條邊都相等,四個(gè)角都是直角)
(1)觀察圖形,利用旋轉(zhuǎn)的觀點(diǎn)說明:
△ADC繞著點(diǎn)__ ___逆時(shí)針旋轉(zhuǎn)___ __°得到△ABF。
(2)猜想:CD與BF有怎樣的數(shù)量關(guān)系和位置關(guān)系?并證明你的猜想.
(3)若CD與BF相交于點(diǎn)M,求∠AMF的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列選項(xiàng)中,具有相反意義的量是( )
A.收入20元與支出30元
B.上升了6米和后退了7米
C.賣出10斤米和盈利10元
D.向東行30米和向北行30米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為申辦2013年冬奧會(huì),須改變某城市的交通狀況,在街道拓寬工程中,要伐掉一棵樹AB,在地面上事先劃定以B為圓心,半徑與AB等長的圓形危險(xiǎn)區(qū).現(xiàn)在某工人站在離B點(diǎn)3米遠(yuǎn)的D處,從C點(diǎn)測(cè)得樹的頂端A點(diǎn)的仰角為60°,樹的底部B點(diǎn)的俯角為30°.問:距離B點(diǎn)8米元的保護(hù)物是否存在危險(xiǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com