【題目】已知:正方形與正方形共頂點.

(1)探究:如圖,點在正方形的邊上,點在正方形的邊上,連接.求證:

(2)拓展:將如圖中正方形繞點順時針方向旋轉(zhuǎn),如圖所示,試探究線段之間的數(shù)量關(guān)系,并說明理由;

(3)運用:正方形在旋轉(zhuǎn)過程中,當,三點在一條直線上時,如圖所示,延長于點.若GH=2,求的長.

【答案】(1)見解析;(2)線段之間的數(shù)量關(guān)系為;理由見解析;(3).

【解析】

1)連接,由正方形性質(zhì)知∠CEG=B=90°、∠ECG=45°,據(jù)此可得、GEAB,利用平行線分線段成比例定理可得;

2)連接,,只需證ACG∽△BCE即可得;

3)證AHG∽△CHA,設(shè)BC=CD=AD=a,知AC=a,由AH=aDH=a、CH=a,由可得a的值.

1)連接

∵四邊形是正方形,∴,,

∵四邊形是正方形,∴,,

三點在一條直線上

,

2)連接,,

,

中,

、

, , ,

∴線段之間的數(shù)量關(guān)系為

3)由(2)可知

,點三點共線, ,

, ,

,

,

設(shè),則,

則由, ,

,

解得:,即

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機構(gòu)將今年紹興市民最關(guān)注的熱點話題分為消費.教育.環(huán)保.反腐及其它共五類.根據(jù)最近一次隨機調(diào)查的相關(guān)數(shù)據(jù),繪制的統(tǒng)計圖表如下:

根據(jù)以上信息解答下列問題:

1)本次共調(diào)查_________人,請在答題卡上補全條形統(tǒng)計圖并標出相應(yīng)數(shù)據(jù);

2)若紹興市約有500萬人口,請你估計最關(guān)注教育問題的人數(shù)約為多少萬人?

3)在這次調(diào)查中,某單位共有甲...丁四人最關(guān)注教育問題,現(xiàn)準備從這四中隨機抽取兩人進行座談,求抽取的兩人恰好是甲和乙的概率(畫樹狀圖或列表說明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解七年級1000名學(xué)生的身體健康情況,從該年級隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5﹣46.5;B:46.5﹣53.5;C:53.5﹣60.5;D:60.5﹣67.5;E:67.5﹣74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

請解答下列問題:

(1)這次隨機抽取了   名學(xué)生調(diào)查,并補全頻數(shù)分布直方圖;

(2)在抽取調(diào)查的若干名學(xué)生中體重在   組的人數(shù)最多,在扇形統(tǒng)計圖中D組的圓心角是   度;

(3)請你估計該校七年級體重超過60kg的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探索發(fā)現(xiàn))

如圖,是等邊三角形,點邊上一個動點,將繞點逆時針旋轉(zhuǎn)得到,連接.小明在探索這個問題時發(fā)現(xiàn)四邊形是菱形.

小明是這樣想的:

1)請參考小明的思路寫出證明過程;

2)直接寫出線段,,之間的數(shù)量關(guān)系:______________;

(理解運用)

如圖,在中,于點.繞點逆時針旋轉(zhuǎn)得到,延長,交于點.

3)判斷四邊形的形狀,并說明理由;

(拓展遷移)

4)在(3)的前提下,如圖,將沿折疊得到,連接,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次一共調(diào)查了多少名購買者?

(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為   度.

(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:我們知道,在四邊形ABCD中,當對角線,若,時,

1)則四邊形ABCD的面積為 ;

小凱遇到一個問題:如圖1,在四邊形ABCD中,對角線AC、BD相交于點O,,求四邊形ABCD的面積。

小凱發(fā)現(xiàn),如圖2分別過點A、C作直線BD的垂線,垂足分別為點E,F,設(shè)AOm,通過計算的面積和使問題得以解決。

請回答:

2的面積為 (用含m的式子表示)

3)求四邊形ABCD的面積。

參考小凱思考問題的方法,解決問題:如圖3,在四邊形ABCD中,對角線AC、BD相交于點O,,),則四邊形ABCD的面積為 (用含a,b的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(4分)一元二次方程的根的情況是(

A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根

C.沒有實數(shù)根 D無法確定

【答案】A

【解析】

試題∵△=,方程有兩個不相等的實數(shù)根.故選A.

考點:根的判別式

型】單選題
結(jié)束】
9

【題目】已知直線y=kx(k>0)與雙曲線交于點A(x1,y1),B(x2,y2)兩點,則x1y2+x2y1的值為【 】

A.﹣6 B.﹣9 C.0 D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,以為直徑作半圓,圓心為.以點為圓心,為半徑作弧,過點的平行線交兩弧于點、,則陰影部分的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某酒店試銷售某種套餐,試銷一段時間后發(fā)現(xiàn),每份套餐的成本為7元,該店每天固定支出費用為200(不含套餐成本) 若每份售價不超過10元,每天可銷售300份;若每份售價超過10元,每提高1元,每天的銷售量就減少30份. 設(shè)該店每份套餐的售價為xx7)元,每天的銷售量為y份,每天的利潤為M元.

(1)直接寫出yx的函數(shù)關(guān)系式;

(2)求出Mx的函數(shù)關(guān)系式;

(3)若該店既要吸引顧客,使每天的銷售量較大,又要獲取最大的利潤,則每份套餐的售價應(yīng)定為多少元(為了便于計算,每份套餐的售價取整數(shù))?此時,最大利潤為多少元?

查看答案和解析>>

同步練習(xí)冊答案