精英家教網 > 初中數學 > 題目詳情

【題目】已知二次函數y=ax2+bx+c(a0)的圖象如圖所示,下列結論:2a+b<0;abc>0;4a2b+c>0;a+c>0,其中正確結論的個數為( ).

A.4個 B.3個 C.2個 D.1個

【答案】C.

【解析】

試題分析:根據二次函數的圖象與系數的關系:二次項系數a決定拋物線的開口方向和大。灰淮雾椣禂礲和二次項系數a共同決定對稱軸的位置;常數項c決定拋物線與y軸交點;b24ac的符號決定拋物線與x軸交點個數.所以根據拋物線的開口方向和對稱軸判斷;根據拋物線與y軸的交點和對稱軸判斷;根據x=2時,y<0判斷;根據x=±1時,y>0判斷①∵拋物線開口向下,a<0,∵﹣<1,2a+b<0,正確;拋物線與y軸交于正半軸,c>0,∵﹣>0,a<0,b>0,abc<0,錯誤;當x=2時,y<0,4a2b+c<0,錯誤;x=±1時,y>0,ab+c>0,a+b+c>0,a+c>0,正確,故選:C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中, A=80, ABCACD的平分線交于點A1,得A1; A1BCA1CD的平分線相交于點A2,得A2;……; A7BCA7CD的平分線相交于點A8,得A8,則A8的度數為()

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列運算正確的是( )
A.a2a3=a6
B.(ab)2=a2b2
C.(a23=a5
D.a2+a2=a4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AD、BE分別是△ABC的中線,AD、BE相交于點F.
(1)△ABC與△ABD的面積有怎樣的數量關系?為什么?
(2)△BDF與△AEF的面積有怎樣的數量關系?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】現(xiàn)有一張圓心角為108°,半徑為4cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個底面半徑為1cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的面積為( ).

A.0.8πcm2 B.3.2πcm2 C.4πcm2 D.4.8πcm2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,將△ABC中紙片沿DE折疊,使點A落在四邊形DBCE內點A′的位置,探索∠A與∠1+∠2之間的數量關系,并說明理由
(1)如圖2,將△ABC中紙片沿DE折疊,使點A落在四邊形DBCE的外部點A′的位置,探索∠A與∠1、∠2之間的數量關系,并說明理由;
(2)如圖3,將四邊形ABCD沿EF折疊,使點A、D落在四邊形BCFE內部點A′D′的位置,請直接寫出∠A、∠D、∠1與∠2之間的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AOB=40°,在AOB的兩邊OA、OB上分別存在點Q、點P,過點Q作直線QROB,當OP=QP時,PQR的度數是( ).

A.60° B.80° C.100° D.120°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等邊ABC中,點DE分別在邊BC,AB上,且BD=AE,ADCE交于點F

1)求證:AD=CE;

2)求∠DFC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點O是等腰直角三角形ABC斜邊上的中點,AB=BC,EAC上一點,連結EB.

(1) 如圖1,若點E在線段AC上,過點AAMBE,垂足為M,交BO于點F.求證:OE=OF

(2)如圖2,若點EAC的延長線上,AMBE于點M,交OB的延長線于點F,其它條件不變,則結論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.

查看答案和解析>>

同步練習冊答案