【題目】數(shù)學(xué)課上,同學(xué)們探究下面命題的正確性,頂角為36°的等腰三角形我們稱之為黃金三角形,“黃金三角形“具有一種特性,即經(jīng)過(guò)它某一頂點(diǎn)的一條直線可以把它分成兩個(gè)小等腰三角形,為此,請(qǐng)你,解答問(wèn)題:
(1)已知如圖1:黃金三角形△ABC中,∠A=36°,直線BD平分∠ABC交AC于點(diǎn)D,求證:△ABD和△DBC都是等腰三角形;
(2)如圖,在△ABC中,AB=AC,∠A=36°,請(qǐng)你設(shè)計(jì)三種不同的方法,將△ABC分割成三個(gè)等腰三角形,不要求寫(xiě)出畫(huà)法,不要求證明,但是要標(biāo)出所分得的每個(gè)三角形的各內(nèi)角的度數(shù).
(3)已知一個(gè)三角形可以被分成兩個(gè)等腰三角形,若原三角形的一個(gè)內(nèi)角為36°,求原三角形的最大內(nèi)角的所有可能值.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)最大角的可能值為72°,90°,108°,126°,132°
【解析】
(1)通過(guò)角度轉(zhuǎn)換得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判斷;
(2)根據(jù)等腰三角形的兩底角相等及三角形內(nèi)角和定理進(jìn)行解答即可;
(3)設(shè)原△ABD中有一個(gè)角為36°,可分成兩個(gè)等腰三角形,逐個(gè)討論:①當(dāng)分割的直線過(guò)頂點(diǎn)B時(shí)②當(dāng)分割三角形的直線過(guò)點(diǎn)D時(shí)情況和過(guò)點(diǎn)B一樣的,③當(dāng)分割三角形的直線過(guò)點(diǎn)A時(shí),在分別求出最大角的度數(shù)即可.
解:(1)證明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,
∴∠ABD=∠BAD,
∴△ABD為等腰三角形,
∴∠BDC=72°=∠C,
∴△BCD為等腰三角形;
(2)根據(jù)等腰三角形的兩底角相等及三角形內(nèi)角和定理作出,如圖所示:
(3)設(shè)原△ABD中有一個(gè)角為36°,可分成兩個(gè)等腰三角形,逐個(gè)討論:
①當(dāng)分割的直線過(guò)頂點(diǎn)B時(shí),
【1】:第一個(gè)等腰三角形ABC以A為頂點(diǎn):則第二個(gè)等腰三角形BCD只可能以C為頂點(diǎn)
此時(shí)∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值為108°;
【2】:第一個(gè)等腰三角形ABC以B為頂點(diǎn):第二個(gè)等腰三角形BCD只可能以C為頂點(diǎn)
此時(shí):∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值為126°;
【3】第一個(gè)等腰三角形ABC以C為頂點(diǎn):第二個(gè)等腰三角形BCD有三種情況
△BCD以B為頂點(diǎn):∠A=36°,∠D=72°,
∴∠ABD=72°,最大角的值為72°;
△BCD以C為頂點(diǎn):∠A=36°,∠D=54°,
∴∠ABD=90°,最大角的值為90°;
△BCD以D為頂點(diǎn):∠A=36°,∠D=36°
∴∠ABD=108°,最大角的值為108°;
②當(dāng)分割三角形的直線過(guò)點(diǎn)D時(shí)情況和過(guò)點(diǎn)B一樣的;
③當(dāng)分割三角形的直線過(guò)點(diǎn)A時(shí),
此時(shí)∠A=36°,∠D=12°,∠B=132°,
最大角的值為132°;
綜上所述:最大角的可能值為72°,90°,108°,126°,132°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在四邊形ABCD中,∠A=∠C=90°.
(1)∠ABC+∠ADC= °;
(2)如圖①,若DE平分∠ADC,BF平分∠ABC的外角,請(qǐng)寫(xiě)出DE與BF的位置關(guān)系,并證明;
(3)如圖②,若BE,DE分別四等分∠ABC、∠ADC的外角(即∠CDE=∠CDN,∠CBE=∠CBM),試求∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了參加學(xué)校舉辦的“新城杯”足球聯(lián)賽,新城中學(xué)七(1)班學(xué)生去商場(chǎng)購(gòu)買(mǎi)了A品牌足球1個(gè)、B品牌足球2個(gè),共花費(fèi)400元,七(2)班學(xué)生購(gòu)買(mǎi)了品牌A足球3個(gè)、B品牌足球1個(gè),共花費(fèi)450元.
(1)求購(gòu)買(mǎi)一個(gè)A種品牌、一個(gè)B種品牌的足球各需多少元?
(2)為了進(jìn)一步發(fā)展“校園足球”,學(xué)校準(zhǔn)備再次購(gòu)進(jìn)A、B兩種品牌的足球,學(xué)校提供專項(xiàng)經(jīng)費(fèi)850元全部用于購(gòu)買(mǎi)這兩種品牌的足球,學(xué)校這次最多能購(gòu)買(mǎi)多少個(gè)足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn).
(1)求拋物線的解析式.
(2)點(diǎn)M是線段BC上的點(diǎn)(不與B,C重合),過(guò)M作MN∥y軸交拋物線于N,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MN的長(zhǎng).
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為的正方形中,剪去一個(gè)邊長(zhǎng)為的小正方形(),將余下的部分拼成一個(gè)梯形,根據(jù)兩個(gè)圖形中陰影部分面積關(guān)系,解決下列問(wèn)題:
(1)如圖①所示,陰影部分的面積為 (寫(xiě)成平方差形式).
(2)如圖②所示,梯形的上底是 ,下底是 ,高是 ,根據(jù)梯形面積公式可以算出面積是 (寫(xiě)成多項(xiàng)式乘法的形式).
(3)根據(jù)前面兩問(wèn),可以得到公式 .
(4)運(yùn)用你所得到的公式計(jì)算: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鐵一課間餐種類繁多,深受學(xué)生喜愛(ài).這天飯?zhí)迷谡n間的出品有雞腿、薯餅、魚(yú)丸和雞柳.某同學(xué)就九年級(jí)學(xué)生對(duì)課間餐各類食物的喜愛(ài)程度做了抽樣調(diào)查,制成表格如下:
課間餐種類 | 人類 | 百分比 |
雞腿 | 150 | 60% |
薯餅 | 30 | a |
魚(yú)丸 | b | 12% |
雞柳 | 40 | c |
(1)樣本容量是 , a= , b= , c= .
(2)若小王和小李商議著一起去買(mǎi)課間餐,若他們對(duì)以上四種口味的課間餐喜愛(ài)程度相同.請(qǐng)你幫他們算一算他們買(mǎi)了相同課間餐的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二次函數(shù)y1=a(x﹣2)2+c(a≠0)的圖象與y軸的交點(diǎn)為(0,1),在x軸上截得的線段長(zhǎng)為 .
(1)求a、c的值.
(2)對(duì)于任意實(shí)數(shù)k,規(guī)定:當(dāng)﹣2≤x≤1時(shí),關(guān)于x的函數(shù)y2=y1﹣kx的最小值稱為k的“貢獻(xiàn)值”,記作g(k).求g(k)的解析式.
(3)在(2)條件下,當(dāng)“貢獻(xiàn)值”g(k)=1時(shí),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)!绑w育課外活動(dòng)興趣小組”,開(kāi)設(shè)了以下體育課外活動(dòng)項(xiàng)目:A.足球 B.乒乓球C.羽毛球 D.籃球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有人,在扇形統(tǒng)計(jì)圖中“D”對(duì)應(yīng)的圓心角的度數(shù)為;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加市里組織的乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從水平地面看一山坡上的通訊鐵塔PC,在點(diǎn)A處用測(cè)角儀測(cè)得塔頂端點(diǎn)P的仰角是45°,向前走9m到達(dá)B點(diǎn),用測(cè)角儀測(cè)得塔頂端點(diǎn)P和塔底端點(diǎn)C的仰角分別是60°和30°.
(1)求∠BPC的度數(shù).
(2)求該鐵塔PF的高度,(結(jié)果精確到0.1m,參考數(shù)據(jù): .)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com