【題目】如圖,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AF于M,N.下列結(jié)論:①AF⊥BG;②BN=NF;③;④S四邊形CGNF=S四邊形ANGD.其中正確的結(jié)論的序號(hào)是 .
【答案】①③.
【解析】
試題分析:①易證△ABF≌△BCG,即可解題;②易證△BNF∽△BCG,即可求得的值,即可解題;③作EH⊥AF,令A(yù)B=3,即可求得MN,BM的值,即可解題;④連接AG,F(xiàn)G,根據(jù)③中結(jié)論即可求得S四邊形CGNF和S四邊形ANGD,即可解題.
①∵四邊形ABCD為正方形,∴AB=BC=CD,
∵BE=EF=FC,CG=2GD,∴BF=CG,
∵在△ABF和△BCG中,,
∴△ABF≌△BCG,∴∠BAF=∠CBG,
∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正確;
②∵在△BNF和△BCG中,,
∴△BNF∽△BCG,∴,∴BN=NF;②錯(cuò)誤;
③作EH⊥AF,令A(yù)B=3,則BF=2,BE=EF=CF=1,
AF=,
∵S△ABF=AFBN=ABBF,∴BN=,NF=BN=,
∴AN=AF﹣NF=,∵E是BF中點(diǎn),
∴EH是△BFN的中位線,∴EH=,NH=,BN∥EH,
∴AH=,,解得:MN=,
∴BM=BN﹣MN=,MG=BG﹣BM=,∴,③正確;
④連接AG,F(xiàn)G,根據(jù)③中結(jié)論,
則NG=BG﹣BN=,∵S四邊形CGNF=S△CFG+S△GNF=CGCF+NFNG=1+,
S四邊形ANGD=S△ANG+S△ADG=ANGN+ADDG=,∴S四邊形CGNF≠S四邊形ANGD,④錯(cuò)誤;
故答案為 ①③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解下列方程:
(1)(x﹣2)2=16
(2)x2﹣4x﹣3=0 (配方法)
(3)(x﹣1)(x + 2)= 2(x + 2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為慶祝改革開放40周年,深圳舉辦了燈光秀,某數(shù)學(xué)興趣小組為測(cè)量“平安金融中心”AB的高度,他們?cè)诘孛?/span>C處測(cè)得另一幢大廈DE的頂部E處的仰角∠ECD=32°.登上大廈DE的頂部E處后,測(cè)得“平安中心”AB的頂部A處的仰角為60°,(如圖).已知C、D、B三點(diǎn)在同一水平直線上,且CD=400米,DB=200米.
(1)求大廈DE的高度;
(2)求平安金融中心AB的高度.
(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式組.
請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得_______;
(Ⅱ)解不等式②,得________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來(lái):
(Ⅳ)原不等式組的解集為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園草坪的防護(hù)欄由100段形狀相同的拋物線形構(gòu)件組成,為了牢固起見,每段護(hù)欄需要間距0.4m加設(shè)一根不銹鋼的支柱,防護(hù)欄的最高點(diǎn)距底部0.5m(如圖),則這條防護(hù)欄需要不銹鋼支柱的總長(zhǎng)度至少為( 。
A. 50m B. 100m C. 160m D. 200m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,為半圓的直徑,為的延長(zhǎng)線上一點(diǎn),為半圓的切線,切點(diǎn)為.
(1)求證:;
(2)如圖2,的平分線分別交,于點(diǎn),.
①求的值;
②若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場(chǎng)調(diào)查整理出如下信息:
①該產(chǎn)品90天內(nèi)日銷售量(m件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
時(shí)間(第x天) | 1 | 3 | 6 | 10 | … |
日銷售量(m件) | 198 | 194 | 188 | 180 | … |
②該產(chǎn)品90天內(nèi)每天的銷售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:
時(shí)間(第x天) | 1≤x<50 | 50≤x≤90 |
銷售價(jià)格(元/件) | x+60 | 100 |
(1)求m關(guān)于x的一次函數(shù)表達(dá)式;
(2)設(shè)銷售該產(chǎn)品每天利潤(rùn)為y元,請(qǐng)寫出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品哪天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?【提示:每天銷售利潤(rùn)=日銷售量×(每件銷售價(jià)格-每件成本)】
(3)在該產(chǎn)品銷售的過(guò)程中,共有多少天銷售利潤(rùn)不低于5400元,請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=kx+1與二次函數(shù)y2=ax2+bx﹣2交于A,B兩點(diǎn),且A(1,0)拋物線的對(duì)稱軸是x=﹣ .
(1)求k和a、b的值;
(2)求不等式kx+1>ax2+bx﹣2的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC中,D為AB的中點(diǎn),DC⊥AC,且∠BCD=30°,求∠CDA的正弦值、余弦值、正切值和余切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com