【題目】解下列方程:
(1)(x﹣2)2=16
(2)x2﹣4x﹣3=0 (配方法)
(3)(x﹣1)(x + 2)= 2(x + 2)
【答案】(1) x1=6,x2=-2;(2) x1=-2+,x2=-2-;(3) x1=-2,x2=3
【解析】
(1)直接用開平方法解;
(2)等式兩邊同時(shí)加上4,再將-3移項(xiàng)后,用開平方法解;
(3)先移項(xiàng),然后利用提取公因式進(jìn)行因式分解;
(1)(x﹣2)2=16
x-2=
x1=6,x2=-2
(2)x2﹣4x﹣3=0
x2﹣4x+4﹣3=0+4
(x+2)2﹣3=0+4
(x+2)2=7
x+2=
x1=-2+,x2=-2-
(3)(x﹣1)(x + 2)= 2(x + 2)
(x﹣1)(x + 2)- 2(x + 2)=0
(x+2)(x-1-2)=0
x1=-2,x2=3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠B=4∠BAC.延長BC到點(diǎn)D,使CD=CB,連接AD,過點(diǎn)D作DE⊥AB于點(diǎn)E,交AC于點(diǎn)F.
(1)依題意補(bǔ)全圖形;
(2)求證:∠B=2∠BAD;
(3)用等式表示線段EA,EB和DB之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某物流公司的甲、乙兩輛貨車分別從A、B兩地同時(shí)相向而行,并以各自的速度勻速行駛,途徑配貨站C,甲車先到達(dá)C地,并在C地用1小時(shí)配貨,然后按原速度開往B地,乙車從B地直達(dá)A地,下圖是甲、乙兩車間的距離(千米)與乙車出發(fā)(時(shí))的函數(shù)的部分圖像
(1)A、B兩地的距離是 千米,甲車出發(fā) 小時(shí)到達(dá)C地;
(2)求乙車出發(fā)2小時(shí)后直至到達(dá)A地的過程中,與的函數(shù)關(guān)系式及的取值范圍,并在圖中補(bǔ)全函數(shù)圖像;
(3)乙車出發(fā)多長時(shí)間,兩車相距150千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)活動(dòng)課上,數(shù)學(xué)興趣小組的同學(xué)們測量校園內(nèi)一棵大樹的高度,設(shè)計(jì)的方案及測量數(shù)據(jù)如下:
(1)在大樹前的平地上選擇一點(diǎn)A,測得由點(diǎn)A看大樹頂端C的仰角為35°;
(2)在點(diǎn)A和大樹之間選擇一點(diǎn)B(A、B、D在同一直線上),測得由點(diǎn)B看大樹頂端C的仰角恰好為45°;
(3)量出A、B兩點(diǎn)間的距離為4.5米.請你根據(jù)以上數(shù)據(jù)求出大樹CD的高度.(可能用到的參考數(shù)據(jù):sin350.57;cos350.82;tan350.70)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑為AB,點(diǎn)C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)年投入教育經(jīng)費(fèi)萬元,年投入教育經(jīng)費(fèi)萬元.
(1)求年至年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長率;
(2)根據(jù)(1)所得的年平均增長率,預(yù)計(jì)年該地區(qū)將投入教育經(jīng)費(fèi)多少萬元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程x2+(m-2)x+m-3=0.
(1)求證:無論m取什么實(shí)數(shù),這個(gè)方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若這個(gè)方程的兩個(gè)實(shí)數(shù)根x1,x2滿足2x1+x2=m+1,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AF于M,N.下列結(jié)論:①AF⊥BG;②BN=NF;③;④S四邊形CGNF=S四邊形ANGD.其中正確的結(jié)論的序號是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com