【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線交于D.
(1)求證:△ADC∽△CDB;
(2)若AC=2,AB= CD,求⊙O半徑.

【答案】
(1)證明:如圖,連接CO,

∵CD與⊙O相切于點(diǎn)C,

∴∠OCD=90°,

∵AB是圓O的直徑,

∴∠ACB=90°,

∴∠ACO=∠BCD,

∵∠ACO=∠CAD,

∴∠CAD=∠BCD,

在△ADC和△CDB中,

∴△ADC∽△CDB.


(2)解:設(shè)CD為x,

則AB= x,OC=OB= x,

∵∠OCD=90°,

∴OD= = = x,

∴BD=OD﹣OB= x﹣ x= x,

由(1)知,△ADC∽△CDB,

= ,

,

解得CB=1,

∴AB= = ,

∴⊙O半徑是


【解析】(1)首先連接CO,根據(jù)CD與⊙O相切于點(diǎn)C,可得:∠OCD=90°;然后根據(jù)AB是圓O的直徑,可得:∠ACB=90°,據(jù)此判斷出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先設(shè)CD為x,則AB= x,OC=OB= x,用x表示出OD、BD;然后根據(jù)△ADC∽△CDB,可得: = ,據(jù)此求出CB的值是多少,即可求出⊙O半徑是多少.
【考點(diǎn)精析】利用切線的性質(zhì)定理對(duì)題目進(jìn)行判斷即可得到答案,需要熟知切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1+2+22+23+…+22018的值,可令S1+2+22+23+…+22018,則2S2+22+23+24+…22019,因此2SS220191,即S220191.依照以上的方法,計(jì)算出1+5+52+53+…52017的值為(  )

A. 52018﹣1 B. 52019﹣1 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的外接圓為⊙O,點(diǎn)P在劣弧上(不與C點(diǎn)重合).
(1)求∠BPC的度數(shù);
(2)若⊙O的半徑為8,求正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某糕點(diǎn)廠中秋節(jié)前要制作一批盒裝月餅,每盒裝1個(gè)大月餅和7個(gè)小月餅,制作1個(gè)大月餅要用0.06kg面粉,1個(gè)小月餅要用0.015kg面粉,現(xiàn)共有面粉330kg,制作兩種月餅各用多少kg面粉時(shí),才能使生產(chǎn)的大小月餅剛好配套成盒?最多能生產(chǎn)多少盒月餅?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線段AB4.8cm,點(diǎn)C是線段AB的中點(diǎn),點(diǎn)D是線段CB的中點(diǎn),點(diǎn)E在線段AB上,且CEAC,畫圖并計(jì)算DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)P是直徑AB上的一點(diǎn)(不與A重合),過(guò)點(diǎn)P作AB的垂線交BC于點(diǎn)Q.
(1)在線段PQ上取一點(diǎn)D,使DQ=DC,連接DC,試判斷CD與⊙O的位置關(guān)系,并說(shuō)明理由.
(2)若cosB= ,BP=6,AP=1,求QC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】6張如圖1的長(zhǎng)為a,寬為b(a>b)的小長(zhǎng)方形紙片,按圖2方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個(gè)矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長(zhǎng)度變化時(shí),按照同樣的放置方式,S始終保持不變,則a,b滿足(

A. a=2b B. a=3b C. a=4b D. a=b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)O是等腰△ABC的外心,且∠BOC=60°,底邊BC=2,則△ABC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1的函數(shù)關(guān)系式為y=-x1,且l1x軸交于點(diǎn)D,直線l2經(jīng)過(guò)點(diǎn)A2,0),B(-13),直線l1l2交于點(diǎn)C

1)求直線l2的函數(shù)關(guān)系式;

2)點(diǎn)C的坐標(biāo)為 ;

3)求△ADC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案