【題目】如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是( 。

A. B. C. D.

【答案】C

【解析】

如圖作,FNAD,交ABN,交BEM.設(shè)DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.

如圖作,FNAD,交ABN,交BEM.

∵四邊形ABCD是正方形,

ABCD,FNAD,

∴四邊形ANFD是平行四邊形,

∵∠D=90°,

∴四邊形ANFD是矩形,

AE=3DE,設(shè)DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,

AN=BN,MNAE,

BM=ME,

MN=a,

FM=a,

AEFM,

,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰中,.點(diǎn)從點(diǎn)出發(fā)沿射線方向運(yùn)動(dòng),同時(shí)點(diǎn)出發(fā),以相同的速度沿射線方向運(yùn)動(dòng),連,交直線于點(diǎn)

當(dāng)點(diǎn)運(yùn)動(dòng)到中點(diǎn)時(shí),求的長(zhǎng).

求證:.

過點(diǎn),交直線,請(qǐng)?zhí)骄?/span>之間的數(shù)量關(guān)系,并直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸、軸分別交于點(diǎn)、點(diǎn),點(diǎn)軸的負(fù)半軸上,若將沿直線折疊,點(diǎn)恰好落在軸正半軸上的點(diǎn).

(1)的長(zhǎng);

(2)求點(diǎn)和點(diǎn)的坐標(biāo);

(3) 軸上是否存在一點(diǎn) 使得?若存在,直接寫出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把長(zhǎng)方形紙片放入平面直角坐標(biāo)系中,使,分別落在軸、軸上,連接,將紙片沿折疊,使點(diǎn)落在點(diǎn)的位置,軸交于點(diǎn),若,則的長(zhǎng)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由圖象可知前一分鐘過點(diǎn)(1,2),后三分鐘時(shí)過點(diǎn)(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;

(2)把t=2代入(1)中二次函數(shù)解析式即可.

詳解:(1)v=at2的圖象經(jīng)過點(diǎn)(1,2),

a=2.

∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);

設(shè)反比例函數(shù)的解析式為v=,

由題意知,圖象經(jīng)過點(diǎn)(2,8),

k=16,

∴反比例函數(shù)的解析式為v=(2<t≤5);

(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對(duì)稱軸為y軸,

∴彈珠在軌道上行駛的最大速度在2秒末,為8/分.

點(diǎn)睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點(diǎn)的坐標(biāo).

型】解答
結(jié)束】
24

【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的頂角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來(lái)則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.

(1)在圖1中證明小胖的發(fā)現(xiàn);

借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來(lái)解答下面的問題:

(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;

(3)如圖3,在ABC中,AB=AC,BAC=m°,點(diǎn)E為ABC外一點(diǎn),點(diǎn)D為BC中點(diǎn),∠EBC=∠ACF,ED⊥FD,求EAF的度數(shù)(用含有m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BDAC,垂足為C,且∠A<∠C,點(diǎn)E是一動(dòng)點(diǎn),其在BC上移動(dòng),連接DE,并過點(diǎn)EEFDE,點(diǎn)FAB的延長(zhǎng)線上,連接DFBC于點(diǎn)G

1)請(qǐng)同學(xué)們根據(jù)以上提示,在上圖基礎(chǔ)上補(bǔ)全示意圖.

2)當(dāng)△ABD與△FDE全等,且ADFE,∠A30°,∠AFD40°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷售一種飲料,平均每天可售出100箱,每箱利潤(rùn)為120元,為了擴(kuò)大銷量,盡快減少庫(kù)存,超市準(zhǔn)備適當(dāng)降價(jià),據(jù)測(cè)算,若每箱降價(jià)2元,則每天可多售出4箱.

(1)如果要使每天銷售該飲料獲利14000元,則每箱應(yīng)降價(jià)多少元.

(2)每天銷售該飲料獲利能達(dá)到14500元嗎?若能,則每箱應(yīng)降價(jià)多少?若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線交于點(diǎn)O,以AD為邊向外作RtADE,AED=90°,連接OE,DE=6,OE=8,則另一直角邊AE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多8元,且購(gòu)進(jìn)的甲、乙兩種商品件數(shù)相同.

求甲、乙兩種商品的每件進(jìn)價(jià);

該商場(chǎng)將購(gòu)進(jìn)的甲、乙兩種商品進(jìn)行銷售,甲種商品的銷售單價(jià)為60元,乙種商品的銷售單價(jià)為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場(chǎng)決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價(jià)的七折銷售;乙種商品銷售單價(jià)保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價(jià)至少銷售多少件?

查看答案和解析>>

同步練習(xí)冊(cè)答案