【題目】如圖所示,以的邊為直徑作,點C在上,是的弦,,過點C作于點F,交于點G,過C作交的延長線于點E.
(1)求證:是的切線;
(2)求證:;
(3)若,,求的長.
【答案】(1)見解析;(2)見解析;(3)BE=.
【解析】
(1)連接OC,由∠A=∠CBD可得,進而根據(jù)垂徑定理可得OC⊥BD,然后根據(jù)CE∥BD即可推出OC⊥CE,問題即得解決;
(2)由AB為直徑可得∠ACB=90°,然后根據(jù)同角的余角相等得出∠A=∠BCF,進而可得∠BCF=∠CBD,進一步即可證得結(jié)論;
(3)根據(jù)(2)的結(jié)論和30°角的直角三角形的性質(zhì)可求得GF和BF的長,再在直角△CEF中利用30°角的直角三角形的性質(zhì)可求得EF的長,進一步即可求出結(jié)果.
(1)證明:連接OC,如圖,
∵∠A=∠CBD,∴,∴OC⊥BD,
∵CE∥BD,∴OC⊥CE,
∴CE是⊙O的切線;
(2)證明:∵AB為直徑,∴∠ACB=90°,
∵CF⊥AB,∴∠ACB=∠CFB=90°,
∵∠ABC=∠CBF,∴∠A=∠BCF,
∵∠A=∠CBD,∴∠BCF=∠CBD,
∴CG=BG;
(3)解:∵∠DBA=30°,,∴,,
∵,,∴,,
∵CE∥BD,∴∠E=∠DBA=30°,
∴,
∴BE=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市對火車站進行了大規(guī)模的改建,改建后的火車站除原有的普通售票窗口外,新增了自動打印車票的無人售票窗口.某日,從早8點開始到上午11點,每個普通售票窗口售出的車票數(shù)y1(張)與售票時間x(小時)的正比例函數(shù)關(guān)系滿足圖①中的圖象,每個無人售票窗口售出的車票數(shù)y2(張)與售票時間x(小時)的函數(shù)關(guān)系滿足圖②中的圖象.
(1)圖②中圖象的前半段(含端點)是以原點為頂點的拋物線的一部分,根據(jù)圖中所給數(shù)據(jù)確定拋物線的表達式為 ,其中自變量x的取值范圍是 ;
(2)若當(dāng)天共開放5個無人售票窗口,截至上午9點,兩種窗口共售出的車票數(shù)不少于1450張,則至少需要開放多少個普通售票窗口?
(3)上午10點時,每個普通售票窗口與每個無人售票窗口售出的車票數(shù)恰好相同,試確定圖②中圖象的后半段一次函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,.點從出發(fā)沿方向以每秒的速度向終點運動.點從出發(fā)沿方向以每秒的速度向點運動、同時當(dāng)點運動停止時,點隨之停止運動.過點作交邊于點,將繞的中點旋轉(zhuǎn)180°得到.過點作交射線于點,以為邊向右下方作正方形,設(shè)點的運動時間為(秒).
(1)直接寫出的長度(用含的代數(shù)式表示).
(2)當(dāng)點落在上時,求的值.
(3)當(dāng)正方形與有重合部分時,求正方形與重合圖形部分的周長與時間的函數(shù)解析式.
(4)當(dāng)直線與的某一邊垂直時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖 1、圖 2 均是 6×6 的正方形網(wǎng)格,每個小正方形的頂點稱為格點,小正方形的邊長為 1,點 A、B、C、D 均在格點上.在圖 1、圖 2 中,只用無刻度的直尺,在給定的網(wǎng)格中按要求畫圖,所畫圖形的頂點均在格點上,不要求寫出畫法.
(1)在圖 1 中以線段 AB 為邊畫一個△ABM,使∠ABM=45°,且△ABM 的面積為 6;
(2)在圖 2 中以線段 CD 為邊畫一個四邊形 CDEF,使∠CDE=∠CFE=90°,且四邊形 CDEF 的面積為 8.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,點P為矩形ABCD內(nèi)一點,滿足∠APB=90°,連結(jié)C、P兩點,并延長CP交直線AB于點E.若點P是線段CE的中點,則BE=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,動點P沿B→A→D→C→B路線運動,點M是AB邊上的一點,且MB=AB,已知AB=4,BC=2,AP=2MP,則點P到邊AD的距離為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O為△ABC外接圓的圓心,以AB為腰作等腰△ABD,使底邊AD經(jīng)過點O,并分別交BC于點E、交⊙O于點F,若∠BAD=30°.
(1)求證:BD是⊙O的切線;
(2)當(dāng)CA2=CECB時,
①求∠ABC的度數(shù);
②的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年級共有150名女生,為了解該年級女生實心球成績(單位:米)和一分鐘仰臥起坐成績(單位:個)的情況,從中隨機抽取30名女生進行測試,獲得了他們的相關(guān)成績,并對數(shù)據(jù)進行整理、描述和分析.下面給出了部分信息.
a. 實心球成績的頻數(shù)分布表如下:
分組 | ||||||
頻數(shù) | 2 | m | 10 | 6 | 2 | 1 |
b. 實心球成績在這一組的是:
a7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.2 7.3 7.3
c. 一分鐘仰臥起坐成績?nèi)缦聢D所示:
根據(jù)以上信息,回答下列問題:
(1) ①表中m的值為__________;
②一分鐘仰臥起坐成績的中位數(shù)為__________;
(2)若實心球成績達到7.2米及以上時,成績記為優(yōu)秀.
①請估計全年級女生實心球成績達到優(yōu)秀的人數(shù);
②該年級某班體育委員將本班在這次抽樣測試中被抽取的8名女生的兩項成績的數(shù)據(jù)抄錄如下:
女生代碼 | A | B | C | D | E | F | G | H |
實心球 | 8.1 | 7.7 | 7.5 | 7.5 | 7.3 | 7.2 | 7.0 | 6.5 |
一分鐘仰臥起坐 | * | 42 | 47 | * | 47 | 52 | * | 49 |
其中有3名女生的一分鐘仰臥起坐成績未抄錄完整,但老師說這8名女生中恰好有4人兩項測試成績都達到了優(yōu)秀,于是體育委員推測女生E的一分鐘仰臥起坐成績達到了優(yōu)秀,你同意體育委員的說法嗎?并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地政府計劃為農(nóng)戶購買農(nóng)機設(shè)備提供補貼.其中購買Ⅰ型、Ⅱ型設(shè)備農(nóng)民所投資的金額與政府補貼的額度存在下表所示的函數(shù)對應(yīng)關(guān)系.
型號 金額 | Ⅰ型設(shè)備 | Ⅱ型設(shè)備 | |||
投資金額x(萬元) | x | 5 | x | 2 | 4 |
補貼金額y(萬元) | y1=kx(k≠0) | 2 | y2=ax2+bx(a≠0) | 2.8 | 4 |
(1)分別求y1和y2的函數(shù)解析式;
(2)有一農(nóng)戶共投資10萬元購買Ⅰ型、Ⅱ型兩種設(shè)備,兩種設(shè)備的投資均為整數(shù)萬元,要想獲得最大補貼金額,應(yīng)該如何購買?能獲得的最大補貼金額為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com