【題目】如圖,已知:在坐標平面內(nèi),等腰直角中,,,點的坐標為,點的坐標為,交軸于點.
(1)求點的坐標;
(2)求點的坐標;
(3)如圖,點在軸上,當的周長最小時,求出點的坐標;
(4)在直線上有點,在軸上有點,求出的最小值.
【答案】(1)點的坐標為;(2)點的坐標為;(3)點的坐標為;(4)最小值為9.
【解析】
(1)過C作直線EF∥x軸,分別過點A、B作直線EF的垂線,垂足分別為E、F,證明ΔACE≌ΔCBF,得到CF=AE,BF=CE,即可得到結(jié)論;
(2)分別過點A、B作x軸的垂線,垂足分別為G、H易證ΔAGD≌ΔBHD,得到GD=HD.由G(-3,0),H(1,0),即可得到結(jié)論;
(3)作點A(-5,1)關(guān)于軸的對稱點A' (-5,-1),連接AP,A' P,A' C.過A' 作A' R⊥y軸于R,則AP=A' P,根據(jù)ΔACP的周長=AC+AP+CP=AC+A'P+CP≥AC+A'C.根據(jù)△A'RC和△COP都是等腰直角三角形,得到PO=CO=4,從而得到結(jié)論.
(4)作點B關(guān)于直線AC的對稱點B'.過B'作B'R⊥y軸于R,過B作BT⊥y軸于T.可證明△B'RC≌△BTC,根據(jù)全等三角形對應(yīng)邊相等可B'的坐標.過點B'作x軸的垂線交直線AC于點M,交x軸于點N,則BM+MN=B'M+MN.根據(jù)“垂線段最短”可得它的最小值即線段B'N的長.即可得到結(jié)論.
(1)如圖,過C作直線EF∥x軸,分別過點A、B作直線EF的垂線,垂足分別為E、F,
∴∠E=∠F=90°,
∴∠EAC+∠ECA=90°.
∵∠ACB=90°,
∴∠BCF+∠ECA=90°,
∴∠BCF=∠EAC.
又∵AC=BC,
∴ΔACE≌ΔCBF,
∴CF=AE,BF=CE.
∵點A(-5,1),點C(0,4),
∴CF=AE=3,BF=CE=5,且5-4=1,
∴點B的坐標為(3,-1);
(2)如圖,分別過點A、B作x軸的垂線,垂足分別為G、H,
∴∠AGD=∠BHD=90°.
又∵∠ADG=∠BDH,AG=BH=1,
∴ΔAGD≌ΔBHD,
∴GD=HD.
∵G(-3,0),H(1,0),
∴GH=4,
∴GD=HD=2,
∴OD=OG-GD=3-2=1,
∴點D的坐標為(-1,0);
(3)作點A(-5,1)關(guān)于軸的對稱點A' (-5,-1),連接AP,A' P,A' C.過A' 作A' R⊥y軸于R.
則AP=A' P,
∴ΔACP的周長=AC+AP+CP=AC+A'P+CP≥AC+A'C.
∵A'R=5,CR=CO+OR=4+1=5,
∴A'R=CR,
∴△A'RC是等腰直角三角形,
∴∠CA'R=45°.
∵A'R∥x軸,
∴∠CPO=∠CA'R=45°,
∴△COP是等腰直角三角形,
∴PO=CO=4,
∴點P的坐標為(-4,0).
(4)如圖,作點B(3,-1)關(guān)于直線AC的對稱點B'.過B'作B'R⊥y軸于R,過B作BT⊥y軸于T.
∵BC=B'C,∠B'RC=∠BTC=90°,∠B'CR=∠BCT,
∴△B'RC≌△BTC,
∴B'R=BT=3,CR=CT=CO+OT=4+1=5,
∴OR=OC+CR=4+5=9,
∴B'(-3,9).
過點B'作x軸的垂線交直線AC于點M,交x軸于點N,則BM+MN=B'M+MN.
根據(jù)“垂線段最短”可得它的最小值即線段B'N的長.
故BM+MN的最小值為9.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足為G,且AD=AB,∠EDF=60°,其兩邊分別交邊AB,AC于點E,F.
(1)連接BD,求證:△ABD是等邊三角形;
(2)試猜想:線段AE、AF與AD之間有怎樣的數(shù)量關(guān)系?并給以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某快遞公司每天上午9:00~10:00為集中攬件和派件時段,甲倉庫用來攬收快件,乙倉庫用來派發(fā)快件,該時段內(nèi)甲,乙兩倉庫的快件數(shù)量(件)與時間(分)之間的函數(shù)圖象如圖所示,那么當兩倉庫快遞件數(shù)相同時,此刻的時間為( )
A. 9:15B. 9:20C. 9:25D. 9:30
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于反比例函數(shù)y=-,下列說法不正確的是( )
A. 圖象經(jīng)過點(1,-3)
B. 圖象分布在第二、四象限
C. 當x>0時,y隨x的增大而增大
D. 點A(x1,y1),B(x2,y2)都在反比例函數(shù)y=-的圖象上,若x1<x2,則y1<y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù) y=kx+b 的圖象與坐標軸分別交于 A、B 兩點,與反比例函數(shù) y= 的圖象在第一象限的交點為點 C,CD⊥x 軸,垂足為點 D,若OB=3,OD=6,△AOB 的面積為 3.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)直接寫出當 x>0 時,kx+b﹣>0 的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,點從點開始沿邊向點以的速度移動,點從點開始沿邊向點以2的速度移動.
(1)如果點,分別從點,同時出發(fā),那么幾秒后,的面積等于6?
(2)如果點,分別從點,同時出發(fā),那么幾秒后,的長度等于7?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,點E、F分別在邊AB,BC上,且AE=BF=1,CE,DF交于點O,下面結(jié)論:(1)∠DOC=90°;(2)OC=OE ;(3)S△ODC=S四邊形BEOF.
其中正確的有____________(只填寫序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點M,N的坐標分別為(﹣1,2),(2,1),若拋物線y=ax2﹣x+2(a≠0)與線段MN有兩個不同的交點,則a的取值范圍是( 。
A. a≤﹣1或≤a< B. ≤a<
C. a≤或a> D. a≤﹣1或a≥
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+bx+c的對稱軸為x=2,且過點C(0,3)
(1)求此拋物線的解析式;
(2)證明:該拋物線恒在直線y=﹣2x+1上方.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com