【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于,兩點.

求:(1)反比例函數(shù)關系式;

2n的值;

3)一次函數(shù)關系式;

4)根據(jù)圖像回答,當反比例函數(shù)的值大于一次函數(shù)的值時,x的取值范圍.

【答案】1;(2n值是-3;(3;(4)當x<-30<x<1時,反比例函數(shù)的值大于一次函數(shù)的值.

【解析】

1)把點A1,3)代入反比例函數(shù)的解析式,可求出k的值,進而求出其解析式;

2)把點Bn-1)代入反比例函數(shù)的解析式,求出n的值即可;

3)把AB兩點坐標分別代入一次函數(shù)的解析式,便可求出mb的值,進而求出其解析式;

4)根據(jù)一次函數(shù)和反比例函數(shù)的圖象,反比例函數(shù)在一次函數(shù)上方的部分所對應的x的取值范圍即是所求的解集.

1)∵點A1,3)在反比例函數(shù)的圖象上,

k=3

∴反比例函數(shù)的解析式為,

故答案為:;

2)∵點Bn,-1)在反比例函數(shù)的圖象上,

=-1,

n=-3,

∴點B的坐標為(-3-1),

故答案為:-3

3)點A、B在一次函數(shù)的圖象上,

,

,

∴一次函數(shù)的解析式為,

故答案為:

4)根據(jù)圖象可知 ,當x<-30<x<1時,反比例函數(shù)的值大于一次函數(shù)的值,

故答案為:x<-30<x<1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,若點P和點關于y軸對稱,點和點關于直線l對稱,則稱點是點P關于y軸,直線l的二次對稱點.

如圖1,點

若點B是點A關于y軸,直線的二次對稱點,則點B的坐標為______;

若點是點A關于y軸,直線的二次對稱點,則a的值為______;

若點是點A關于y軸,直線的二次對稱點,則直線的表達式為______;

如圖2的半徑為上存在點M,使得點是點M關于y軸,直線的二次對稱點,且點在射線上,b的取值范圍是______;

x軸上的動點,的半徑為2,若上存在點N,使得點是點N關于y軸,直線的二次對稱點,且點y軸上,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設拋物線x軸交于兩個不同的點A(-1,0)B(m,0),與y軸交于點C.且∠ACB=90°

(1)m的值和拋物線的解析式;

(2)已知點D(1,n )在拋物線上,過點A的直線交拋物線于另一點E.若點Px軸上,以點P、B、D為頂點的三角形與△AEB相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,則∠B=( )

A. 40° B. 30° C. 25° D. 22.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知二次函數(shù)y=ax22ax3aa0)圖象與x軸交于點AB(點A在點B的左側(cè)),與y軸交于點C,頂點為D

1)求點A,B的坐標;

2)若M為對稱軸與x軸交點,且DM=2AM

求二次函數(shù)解析式;

t2xt時,二次函數(shù)有最大值5,求t值;

若直線x=4與此拋物線交于點E,將拋物線在C,E之間的部分記為圖象記為圖象P(含C,E兩點),將圖象P沿直線x=4翻折,得到圖象Q,又過點(10,﹣4)的直線y=kx+b與圖象P,圖象Q都相交,且只有兩個交點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一個三角板,繞點按順時針方向旋轉(zhuǎn),得到,連接,且,,則線段

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店同時購進甲、乙兩種款式的運動服共套,進價和售價如表中所示,設購進甲款運動服套(為正整數(shù)),該服裝店售完全部甲、乙兩款運動服獲得的總利潤為元.

運動服款式

甲款

乙款

進價(元套)

售價(元套)

1)求的函數(shù)關系式;

2)該服裝店計劃投入萬元購進這兩款運動服,則至少購進多少套甲款運動服?若售完全部的甲、乙兩款運動服,則服裝店可獲得的最大利潤是多少元?

3)在(2)的條件下,若服裝店購進甲款運動服的進價降低元(其中),且最多購進套甲款運動服,若服裝店保持這兩款運動服的售價不變,請你設計出使該服裝店獲得最大銷售利潤的購進方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鐘南山院士談到防護新型冠狀病毒肺炎時說:“我們需要重視防護,但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內(nèi)注意通風,勤洗手,多運動,少熬夜.”某社區(qū)為了加強社區(qū)居民對新型冠狀病毒肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒 肺炎的防護知識,并鼓勵社區(qū)居民在線參與作答《2020 年新型冠狀病毒防治全國統(tǒng)一考試 (全國卷)》試卷(滿分 100 分),社區(qū)管理員隨機從甲、乙兩個小區(qū)各抽取 20 名人員的 答卷成績,并對他們的成績(單位:分)進行統(tǒng)計、分析,過程如下:

收集數(shù)據(jù)

甲小區(qū):85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75

乙小區(qū):80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90

整理數(shù)據(jù)

60≤x≤70

70x≤80

80x≤90

90x≤100

甲小區(qū)

2

5

8

5

乙小區(qū)

3

7

5

5

分析數(shù)據(jù)

平均數(shù)

中位數(shù)

眾數(shù)

甲小區(qū)

85.75

87.5

a

乙小區(qū)

83.5

b

80

應用數(shù)據(jù)

1)填空:a = ,b =___

2)若甲小區(qū)共有 800 人參與答卷,請估計甲小區(qū)成績大于 90 分的人數(shù)為_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,上一點,連接

1)如圖1,若,延長線上一點,垂直,求證:

2)過點,為垂足,連接并延長交于點.

①如圖2,若,求證:

②如圖3,若的中點,直接寫出的值(用含的式子表示)

查看答案和解析>>

同步練習冊答案