【題目】計算:|﹣2|+4cos30°﹣( 3+

【答案】解:原式=2+4× ﹣8+2
=4 ﹣6.
【解析】直接利用絕對值的性質以及特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪的性質、二次根式的性質化簡,進而求出答案. 此題主要考查了實數(shù)運算,正確利用負整數(shù)指數(shù)冪的性質化簡是解題關鍵.
【考點精析】本題主要考查了整數(shù)指數(shù)冪的運算性質和特殊角的三角函數(shù)值的相關知識點,需要掌握aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某車間計劃加工360個零件,由于技術上的改進,提高了工作效率,每天比原計劃多加工20%,結果提前10天完成任務,求原計劃每天能加工多少個零件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班“數(shù)學興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質進行了探究,探究過程如下,請補充完整.

(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應值列表如下:

x

﹣3

﹣2

﹣1

0

1

2

3

y

3

m

﹣1

0

﹣1

0

3

其中,m=
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質.
(4)進一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有個交點,所以對應的方程x2﹣2|x|=0有個實數(shù)根;
②方程x2﹣2|x|=2有個實數(shù)根;
③關于x的方程x2﹣2|x|=a有4個實數(shù)根時,a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,BC>AB,∠BAD的平分線AF與BD、BC分別交于點E、F,點O是BD的中點,直線OK∥AF,交AD于點K,交BC于點G.
(1)求證:①△DOK≌△BOG;②AB+AK=BG;
(2)若KD=KG,BC=4﹣
①求KD的長度;
②如圖2,點P是線段KD上的動點(不與點D、K重合),PM∥DG交KG于點M,PN∥KG交DG于點N,設PD=m,當SPMN= 時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在4×4正方形網(wǎng)格中,有3個小正方形已經(jīng)涂黑,若再涂黑任意一個白色的小正方形(每一個白色的小正方形被涂黑的可能性相同),使新構成的黑色部分的圖形是軸對稱圖形的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=9,AD=4.ECD邊上一點,CE=6.點P從點B出發(fā),以每秒1個單位的速度沿著邊BA向終點A運動,連接PE.設點P運動的時間為t秒.

(1)求△ADE的周長;

(2)當t為何值時,△PAE為直角三角形?

(3)是否存在這樣的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將線段AB繞點O順時針旋轉90°得到線段A′B′,那么A(﹣2,5)的對應點A′的坐標是( 。

A.(2,5)
B.(5,2)
C.(2,﹣5)
D.(5,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,E是AC邊上的一點,且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙O交AC于點D,交BE于點F.

(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點D是△ABC所在平面內一點,連接AD、CD

(1)如圖1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC

(2)如圖2,若存在一點P,使得PB平分∠ABC,同時PD平分∠ADC,探究∠A,∠P,∠C的關系并證明;

(3)如圖3,在 (2)的條件下,將點D移至∠ABC的外部,其它條件不變,探究∠A,∠P,∠C的關系并證明.

查看答案和解析>>

同步練習冊答案