【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E在AB上,且AF垂直平分CD,BG垂直平分CE.(1)求∠ECD的度數(shù);(2)若∠ACB為α,則∠ECD的度數(shù)能否用含α的式子來表示.
【答案】見解析
【解析】試題分析:
(1)由AF垂直平分CD可得AC=AD,再由等腰三角形的“三線合一”可得∠FAB=∠CAB,同理可得∠GBA=∠CBA;如圖,設(shè)AF、BG相交于點(diǎn)O,則∠GOF=∠AOB=180°-∠FAB-∠GBA=180°-(180°-∠ACB)=135°,由此在四邊形GOFC中可得∠ECD=360°-∠CGO-∠CFO-∠GOF=360°-90°-90°-∠GOF=180°-135°=45°.
(2)思路同(1)只需把∠ACB=90°換成∠ACB= 可解得∠DCE=90°- .
試題解析:
(1)如圖,設(shè)AF、BG相交于點(diǎn)O,連接CO,
∵AF垂直平分CD,
∴AC=AD,∠CFO=90°,∴∠FAB=∠CAB.
同理可得:∠CGO=90°,∠GBA=∠CBA.
∴∠GOF=∠AOB=180°-∠FAB-∠GBA=180°-(180°-∠ACB)=90°+∠ACB=135°,
∵四邊形GOFC的內(nèi)角和為360°,
∴∠ECD=360°-∠CGO-∠CFO-∠GOF
=360°-90°-90°-∠GOF
=180°-135°
=45°.
(2)同(1)可得∠GOF=90°+∠ACB=90°+ ,∠CFO=90°,∠CGO=90°,
∵四邊形GOFC的內(nèi)角和為360°,
∴∠ECD=360°-∠CGO-∠CFO-∠GOF
=360°-90°-90°-∠GOF
=180°-(90°+ )
=90°- .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知射線AB與直線CD交于點(diǎn)O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.
(1)求∠DOF的度數(shù);
(2)試說明OD平分∠AOG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡(jiǎn),再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2019,y=2020.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,P(2,2),點(diǎn)A在x軸正半軸上運(yùn)動(dòng),點(diǎn)B在y軸上運(yùn)動(dòng),且PA=PB.
(1)求證:PA⊥PB;
(2)若點(diǎn)A(8,0),求點(diǎn)B的坐標(biāo);
(3)求OA – OB的值;
(4)如圖2,若點(diǎn)B在y軸正半軸上運(yùn)動(dòng)時(shí),直接寫出OA+OB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生書寫漢字的能力,增強(qiáng)保護(hù)漢字的意識(shí),我市舉辦了首屆“漢字聽寫大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)聽寫50個(gè)漢字,若每正確聽寫出一個(gè)漢字得1分,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績(jī)x分 | 頻數(shù)(人數(shù)) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 8 |
第3組 | 35≤x<40 | 16 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請(qǐng)結(jié)合圖表完成下列各題:
(1)求表中a的值;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測(cè)試成績(jī)不低于40分為優(yōu)秀,則本次測(cè)試的優(yōu)秀率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電影《流浪地球》深受人們喜歡,截止到2019年2月17日,票房達(dá)到3650000000,則數(shù)據(jù)3650000000科學(xué)記數(shù)法表示為( 。
A. 0.365×1010B. 36.5×108C. 3.65×108D. 3.65×109
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BA=BC,△BEF為等腰直角三角形,∠BEF=90°,M為AF的中點(diǎn),求證:ME=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點(diǎn).
(1)求AD的長(zhǎng)及拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以P,Q,C為頂點(diǎn)的三角形與ADE相似?
(3)點(diǎn)N在拋物線對(duì)稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫求解過程);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com