【題目】如圖,已知直線AB與CD相交于點0,OE⊥AB,OF⊥CD,OM是∠BOF的角平分線
(1)若∠AOC=25°,求∠BOD和∠COE的度數.
(2)若∠AOC=a,求∠EOM的度數(用含a的代數式表示)
【答案】(1)∠COE =25°;(2)∠EOM=45°+α.
【解析】
(1)根據垂直的定義可知∠AOE=90°,根據對頂角相等可得∠BOD的度數,由∠COE=∠AOE-∠AOC計算,即可得出答案.
(2)根據對頂角相等可得∠BOD=∠AOC=α,由垂直的定義和角的運算可得∠BOF=90°-α,根據角平分線的定義得∠BOM=45°-α,再由垂直定義即可求得答案.
(1)解: ∵OE⊥AB,
∴∠AOE=90°,
又∵∠AOC=25°,
∴∠COE=∠AOE-∠AOC=90°-25°=65°,∠BOD=∠AOC=25°;
(2)解: ∵∠AOC=α,
∴∠BOD=∠AOC=α,
∵OF⊥CD,
∴∠DOF=90°,
∴∠BOF=∠DOF-∠DOB=90°-α,
又∵OM平分∠BOF,
∴∠BOM= ∠BOF= (90°-α)=45°- α,
∵OE⊥AB,
∴∠BOE=90°,
∴∠EOM=∠BOE-∠BOM,
=90°-(45°- α),
=45°+α.
故答案為:(1)∠BOD=25°∠COE =65°;(2)∠EOM=45°+α.
科目:初中數學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm,射線AG∥BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,點F從點B出發(fā)沿射線BC以2cm/s的速度運動.如果點E、F同時出發(fā),設運動時間為t(s)當t=______s時,以A、C、E、F為頂點四邊形是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:拋物線C1:y=x2﹣2a x+2a+2 頂點P在另一個函數圖象C2上
(1)求證:拋物線C1必過定點A(1,3);并用含的a式子表示頂點P的坐標;
(2)當拋物線C1的頂點P達到最高位置時,求拋物線C1解析式;并判斷是否存在實數m、n,當m≤x≤n時恰有3m≤y≤3n,若存在,求出求m、n的值;若不存在,說明理由;
(3)拋物線C1和圖象C2分別與y軸交于B、C點,當△ABC為等腰三角形,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算:
(1)()2018×(﹣)2019×(﹣1)2017;
(2)[(x﹣y)2+(x+y)(x﹣y)]÷2x;
(3)(x+2y﹣3)(x﹣2y+3);
(4)(1﹣)÷.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為2a的等邊三角形ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是( )
A. a
B.a
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,長方形ABCD沿著直線DE和EF折疊,使得AB的對應點和點E在同一條直線上。
(1)求∠DEF的度數;
(2)如圖2,若再次沿著直線EM和EN折疊使得A、B的對應點分別落在DE和EF上,∠AEM=34°,求∠BEN的度數。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】三角形ABC為等腰直角三角形,其中∠A=90°,BC長為6.
(1)建立適當的直角坐標系,并寫出各個頂點的坐標;
(2)將(1)中各頂點的橫坐標都加2,縱坐標保持不變,與原圖案相比,所得的圖案有什么變化?
(3)將(1)中各頂點的橫坐標不變,將縱坐標都乘-1,與原圖案相比,所得的圖案有什么變化?
(4)將(1)中各頂點的橫坐標都乘-2,縱坐標保持不變,與原圖案相比,所得的圖案有什么變化?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b(k<0)與反比例函數y= 的圖象相交于A、B兩點,一次函數的圖象與y軸相交于點C,已知點A(4,1)
(1)求反比例函數的解析式;
(2)連接OB(O是坐標原點),若△BOC的面積為3,求該一次函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,P是BC上的點,作PQ∥AC交AB于點Q,分別作PR⊥AB,PS⊥AC,垂足分別是R,S,若PR=PS,則下面三個結論:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正確的是( 。
A. ②③④ B. ①② C. ①④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com