二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:

①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),

其中正確結(jié)論的個(gè)數(shù)是(  )

A.  4個(gè)           B.3個(gè)           C 2個(gè)            D. 1個(gè)


B             解:∵拋物線和x軸有兩個(gè)交點(diǎn),

∴b2﹣4ac>0,

∴4ac﹣b2<0,∴①正確;

∵對(duì)稱軸是直線x=﹣1,和x軸的一個(gè)交點(diǎn)在點(diǎn)(0,0)和點(diǎn)(1,0)之間,

∴拋物線和x軸的另一個(gè)交點(diǎn)在(﹣3,0)和(﹣2,0)之間,

∴把(﹣2,0)代入拋物線得:y=4a﹣2b+c>0,

∴4a+c>2b,∴②錯(cuò)誤;

∵把(1,0)代入拋物線得:y=a+b+c<0,

∴2a+2b+2c<0,

∵b=2a,

∴3b+2c<0,∴③正確;

∵拋物線的對(duì)稱軸是直線x=﹣1,

∴y=a﹣b+c的值最大,

即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,

∴am2+bm+b<a,

即m(am+b)+b<a,∴④正確;

即正確的有3個(gè),


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,直線AB,CD相交于點(diǎn)O,射線OM平分∠AOC,ON⊥OM,若∠AOM=35°,則∠CON的度數(shù)為( 。

A.  35°          B.45°          C55°            D. 65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,已知BE∥CF,BE、CF分別平分∠ABC和∠BCD,求證:AB∥CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(﹣3,0),對(duì)稱軸是直線x=﹣1,則a+b+c= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在平面直角坐標(biāo)系內(nèi),已知直線y=x+4與x軸、y軸分別相交于點(diǎn)A和點(diǎn)C,拋物線y=x2+kx+k﹣1圖象過(guò)點(diǎn)A和點(diǎn)C,拋物線與x軸的另一交點(diǎn)是B,

(1)求出此拋物線的解析式、對(duì)稱軸以及B點(diǎn)坐標(biāo);

(2)若在y軸負(fù)半軸上存在點(diǎn)D,能使得以A、C、D為頂點(diǎn)的三角形與△ABC相似,請(qǐng)求出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


二次函數(shù)y=ax2+bx﹣1(a≠0)的圖象經(jīng)過(guò)點(diǎn)(1,1),則代數(shù)式1﹣a﹣b的值為( 。

A.  ﹣3           B﹣1             C.2             D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


某種商品每件進(jìn)價(jià)為20元,調(diào)查表明:在某段時(shí)間內(nèi)若以每件x元(20≤x≤30,且x為整數(shù))出售,可賣出(30﹣x)件.若使利潤(rùn)最大,每件的售價(jià)應(yīng)為  元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


若0<m<2,則點(diǎn)p(m﹣2,m)在( 。

A.  第一象限      B.第二象限      C  第三象限      D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


在函數(shù)y=中,自變量x的取值范圍是( 。

A.  x>1          B.x<1          C.x≠1          D. x=1

查看答案和解析>>

同步練習(xí)冊(cè)答案