【題目】(本小題滿分10分)如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長線相交于點D,E,F,且BF=BC.⊙O是△BEF的外接圓,∠EBF的平分線交EF于點G,交于點H,連接BD、FH.
(1)求證:△ABC≌△EBF;
(2)試判斷BD與⊙O的位置關系,并說明理由;
(3)若AB=1,求HGHB的值.
【答案】(1)證明見試題解析;(2)相切,理由見試題解析;(3).
【解析】
試題(1)由∠ABC=90°和FD⊥AC,得到∠ABF=∠EBF,由∠DEC=∠BEF,得到∠DCE=∠EFB,從而得到△ABC≌△EBF(ASA);
(2)BD與⊙O相切.連接OB,只需證明∠DBE+∠OBE=90°,即可得到OB⊥BD,從而有BD與⊙O相切;
(3)連接EA,EH,由DF為線段AC的垂直平分線,得到AE=CE,由△ABC≌△EBF,得到AB=BE=1,進而得到CE=AE=,故,即可得出結論,
又因為BH為角平分線,易證△EHF為等腰直角三角形,故,得到,再由△GHF∽△FHB,得到.
試題解析:(1)∵∠ABC=90°,∴∠CBF=90°,∵FD⊥AC,∴∠CDE=90°,∴∠ABF=∠EBF,∵∠DEC=∠BEF,∴∠DCE=∠EFB,∵BC=BF,∴△ABC≌△EBF(ASA);
(2)BD與⊙O相切.理由:連接OB,∵DF是AC的垂直平分線,∴AD=DC,∴BD=CD,∴∠DCE=∠DBE,∵OB=OF,∴∠OBF=∠OFB,∵∠DCE=∠EFB,∴∠DBE=∠OBF,∵∠OBF+∠OBE=90°,∴∠DBE+∠OBE=90°,∴OB⊥BD,∴BD與⊙O相切;
(3)連接EA,EH,∵DF為線段AC的垂直平分線,∴AE=CE,∵△ABC≌△EBF,∴AB=BE=1,∴CE=AE=,∴,∴,又∵BH為角平分線,∴∠EBH=∠EFH=45°,∴∠HEF=∠HBF=45°,∠HFG=∠EBG=45°,∴△EHF為等腰直角三角形,∴,∴,∵∠HFG=∠FBG=45°,∠GHF=∠GHF,∴△GHF∽△FHB,∴,∴,∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知二次函數(shù)經(jīng)過點B(3,0),C(0,3),D(4,-5)
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)若P是拋物線上一點,且S△ABP=S△ABC,這樣的點P有幾個請直接寫出它們的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,是高線,,,
(1)用直尺與圓規(guī)作三角形內(nèi)角的平分線(不寫作法,保留作圖痕跡).
(2)在(1)的前提下,判斷①,②中哪一個正確?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,四邊形中,,點從點出發(fā),沿折線運動,到點時停止,已知的面積與點運動的路程的函數(shù)圖象如圖②所示,則點從開始到停止運動的總路程為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線AB:y=kx+b經(jīng)過點B(1,4)、A(5,0)兩點,且與直線y=2x-4交于點C.
(1)求直線AB的解析式并求出點C的坐標;
(2)求出直線y=kx+b、直線y=2x-4及與y軸所圍成的三角形面積;
(3)現(xiàn)有一點P在直線AB上,過點P作PQ∥y軸交直線y=2x-4于點Q,若線段PQ的長為3,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB、AC邊的垂直平分線分別交BC邊于點M、N
(1)如圖①,若∠BAC=110°,則∠MAN= °,若△AMN的周長為9,則BC=
(2)如圖②,若∠BAC=135°,求證:BM2+CN2=MN2;
(3)如圖③,∠ABC的平分線BP和AC邊的垂直平分線相交于點P,過點P作PH垂直BA的延長線于點H.若AB=5,CB=12,求AH的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,點沿邊從點向點以的速度移動;同時,點從點沿邊向點以的速度移動,設點、移動的時間為.問:
當為何值時的面積等于?
當為何值時是直角三角形?
是否存在的值,使的面積最小,若存在,求此時的值及此時的面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com