【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其 中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.
(1)當(dāng)t=2秒時(shí),求PQ的長;
(2)求出發(fā)時(shí)間為幾秒時(shí),△PQB是等腰三角形?
(3)若Q沿B→C→A方向運(yùn)動(dòng),則當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.
【答案】
(1)解:(1)BQ=2×2=4cm,
BP=AB﹣AP=8﹣2×1=6cm,
∵∠B=90°,
PQ= = =2 (cm)
(2)解:根據(jù)題意得:BQ=BP,
即2t=8﹣t,
解得:t= ;
即出發(fā)時(shí)間為 秒時(shí),△PQB是等腰三角形
(3)解:分三種情況:
①當(dāng)CQ=BQ時(shí),如圖1所示:
則∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,
∠A+∠C=90°,
∴∠A=∠ABQ
∴BQ=AQ,
∴CQ=AQ=5
∴BC+CQ=11,
∴t=11÷2=5.5秒.
②當(dāng)CQ=BC時(shí),如圖2所示:
則BC+CQ=12
∴t=12÷2=6秒.
③當(dāng)BC=BQ時(shí),如圖3所示:
過B點(diǎn)作BE⊥AC于點(diǎn)E,
則BE= = =4.8(cm)
∴CE= =3.6cm,
∴CQ=2CE=7.2cm,
∴BC+CQ=13.2cm,
∴t=13.2÷2=6.6秒.
由上可知,當(dāng)t為5.5秒或6秒或6.6秒時(shí),
△BCQ為等腰三角形.
【解析】(1)根據(jù)點(diǎn)P、Q的運(yùn)動(dòng)速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)由題意得出BQ=BP,即2t=8﹣t,解方程即可;(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間有三種情況:①當(dāng)CQ=BQ時(shí)(圖1),則∠C=∠CBQ,可證明∠A=∠ABQ,則BQ=AQ,則CQ=AQ,從而求得t;②當(dāng)CQ=BC時(shí)(圖2),則BC+CQ=12,易求得t;③當(dāng)BC=BQ時(shí)(圖3),過B點(diǎn)作BE⊥AC于點(diǎn)E,則求出BE,CE,即可得出t.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰三角形的判定的相關(guān)知識(shí),掌握如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡稱:等角對(duì)等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等,以及對(duì)勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】到定點(diǎn)的距離等于定長的點(diǎn)的集合是( )
A.圓的外部B.圓的內(nèi)部C.圓D.圓的內(nèi)部和圓
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算a·(a 2) m·am所得的結(jié)果是( )
A. a3m B. a3m+1 C. a4m D. 以上結(jié)論都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程變形正確的是( )
A.方程3x﹣2=2x﹣1移項(xiàng),得3x﹣2x=﹣1﹣2
B.方程3﹣x=2﹣5(x﹣1)去括號(hào),得3﹣x=2﹣5x﹣1
C.方程 可化為3x=6.
D.方程 系數(shù)化為1,得x=﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓柱的底面半徑為3cm,母線長為5cm,則圓柱的側(cè)面積是( )
A.30cm2
B.30πcm2
C.15cm2
D.15πcm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等邊△ABC邊長為6,AD是△ABC的中線,P為線段AD(不包括端點(diǎn)A、D)上一動(dòng)點(diǎn),以CP為一邊且在CP左下方作如圖所示的等邊△CPE,連結(jié)BE.
(1)點(diǎn)P在運(yùn)動(dòng)過程中,線段BE與AP始終相等嗎?說說你的理由;
(2)若延長BE至F,使得CF=CE=5,如圖2,問:求出此時(shí)AP的長;
(3)當(dāng)點(diǎn)P在線段AD的延長線上時(shí),F(xiàn)為線段BE上一點(diǎn),使得CF=CE=5.求EF的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:△ABC中,D點(diǎn)在BC上,現(xiàn)有下列四個(gè)命題:①若AB=AC,則∠B=∠C.②若AB=AC,∠BAD=∠CAD,則AD⊥BC,BD=DC.③若AB=AC,BD=DC,則AD⊥BC,∠BAD=∠CAD.④若AB=AC,AD⊥BC,則BD=DC,∠BAD=∠CAD.其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)A(﹣2,y1),B(﹣1,y2),C(8,y3)都在二次函數(shù)y=ax2(a<0)的圖象上,則下列結(jié)論正確的是( 。
A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列多項(xiàng)式能用平方差公式分解因式的是( )
A. 4x2+y2 B. -4x2-y2 C. -4x2+y2 D. -4x+y2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com