某商品現(xiàn)在的售價(jià)為每件35元.每天可賣出50件.市場(chǎng)調(diào)查反映:如果調(diào)整價(jià)格.每降價(jià)1元,每天可多賣出2件.請(qǐng)你幫助分析,當(dāng)每件商品降價(jià)多少元時(shí),可使每天的銷售額最大,最大銷售額是多少?
設(shè)每件商品降價(jià)x元.每天的銷售額為y元.
(1)分析:根據(jù)問(wèn)題中的數(shù)量關(guān)系.用含x的式子填表:

 
 
原價(jià)
 
每件降價(jià)1元
 
每件降價(jià)2元
 

 
每件降價(jià)x元
 
每件售價(jià)(元)
 
35
 
    34
 
    33
 

 
 
 
每天售量(件)
 
50
 
    52
 
    54
 

 
 
 
 
(2)(由以上分析,用含x的式子表示y,并求出問(wèn)題的解)

(1)35-x,50+2x;(2)y=-2(x-5)2+1800,每件商品降價(jià)5元時(shí),可使每天的銷售額最大,最大銷售額為l 800元.

解析試題分析:(1)現(xiàn)在的售價(jià)為每件35元,則每件商品降價(jià)x元,每件售價(jià)為(35-x)元;多買2x件,即每天售量為(50+2x)件;
(2)每天的銷售額=每件售價(jià)×每天售量,即y=(35-x)(50+2x),配方后得到y(tǒng)=-2(x-5)2+1800,根據(jù)二次函數(shù)的性質(zhì)得到當(dāng)x=5時(shí),y取得最大值1800.
試題解析:(1)35-x,50+2x;
(2)根據(jù)題意,每天的銷售額y=(35-x)(50+2x),(0<x<35)
配方得y=-2(x-5)2+1800,
∵a<0,
∴當(dāng)x=5時(shí),y取得最大值1800.
答:當(dāng)每件商品降價(jià)5元時(shí),可使每天的銷售額最大,最大銷售額為l 800元.
考點(diǎn):二次函數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

將y=2x2-12x-12變?yōu)閥=a(x-m)2+n的形式,則m·n=         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:計(jì)算題

在“母親節(jié)”期間,某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購(gòu)進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤(rùn)捐給慈善機(jī)構(gòu).根據(jù)市場(chǎng)調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量(個(gè))與銷售單價(jià)(元/個(gè))之間的對(duì)應(yīng)關(guān)系如圖所示:

(1)觀察圖象判斷之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場(chǎng)調(diào)查的銷售規(guī)律,求銷售利潤(rùn)(元)與銷售單價(jià)(元/個(gè))之間的函數(shù)關(guān)系式;
(3)若許愿瓶的進(jìn)貨成本不超過(guò)900元,要想獲得最大的利潤(rùn),試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

兩個(gè)直角邊為6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如圖一所示的位置放置,點(diǎn)O與E重合.
(1)Rt△AOB固定不動(dòng),Rt△CED沿x軸以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),當(dāng)點(diǎn)E運(yùn)動(dòng)到與點(diǎn)B重合時(shí)停止,設(shè)運(yùn)動(dòng)x秒后,Rt△AOB和Rt△CED的重疊部分面積為y,求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)Rt△CED以(1)中的速度和方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間x=2秒時(shí),Rt△CED運(yùn)動(dòng)到如圖二所示的位置,若拋物線y=x2+bx+c過(guò)點(diǎn)A,G,求拋物線的解析式;
(3)現(xiàn)有一動(dòng)點(diǎn)P在(2)中的拋物線上運(yùn)動(dòng),試問(wèn)點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在點(diǎn)P到x軸或y軸的距離為2的情況?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(﹣2,0)、B(4,0)、C(0,﹣8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)直線CD交x軸于點(diǎn)E,過(guò)拋物線上在對(duì)稱軸的右邊的點(diǎn)P,作y軸的平行線交x軸于點(diǎn)F,交直線CD于M,使PM=EF,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)將拋物線沿對(duì)稱軸平移,要使拋物線與(2)中的線段EM總有交點(diǎn),那么拋物線向上最多平移多少個(gè)單位長(zhǎng)度,向下最多平移多少個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,二次函數(shù)(其中a,m是常數(shù),且a>0,m>0)的圖象與x軸分別交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,-3),點(diǎn)D在二次函數(shù)的圖象上,CD∥AB,連接AD.過(guò)點(diǎn)A作射線AE交二次函數(shù)的圖象于點(diǎn)E,AB平分∠DAE.
(1)用含m的代數(shù)式表示a;
(2))求證:為定值;
(3)設(shè)該二次函數(shù)圖象的頂點(diǎn)為F.探索:在x軸的負(fù)半軸上是否存在點(diǎn)G,連接CF,以線段GF、AD、AE的長(zhǎng)度為三邊長(zhǎng)的三角形是直角三角形?如果存在,只要找出一個(gè)滿足要求的點(diǎn)G即可,并用含m的代數(shù)式表示該點(diǎn)的橫坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,梯形ABCD中,AD∥BC,AB=AD=DC=5,BC=11.一個(gè)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿線段BC方向運(yùn)動(dòng),過(guò)點(diǎn)P作PQ⊥BC,交折線段BA-AD于點(diǎn)Q,以PQ為邊向右作正方形PQMN,點(diǎn)N在射線BC上,當(dāng)Q點(diǎn)到達(dá)D點(diǎn)時(shí),運(yùn)動(dòng)結(jié)束.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)當(dāng)正方形PQMN的邊MN恰好經(jīng)過(guò)點(diǎn)D時(shí),求運(yùn)動(dòng)時(shí)間t的值;
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)正方形PQMN與△BCD的重合部分面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;
(3)如圖2,當(dāng)點(diǎn)Q在線段AD上運(yùn)動(dòng)時(shí),線段PQ與對(duì)角線BD交于點(diǎn)E,將△DEQ沿BD翻折,得到△DEF,連接PF.是否存在這樣的t,使△PEF是等腰三角形?若存在,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù),其圖像拋物線交軸的于點(diǎn)A(1,0)、B(3,0),交y軸于點(diǎn)C.直線過(guò)點(diǎn)C,且交拋物線于另一點(diǎn)E(點(diǎn)E不與點(diǎn)A、B重合).
(1)求此二次函數(shù)關(guān)系式;
(2)若直線經(jīng)過(guò)拋物線頂點(diǎn)D,交軸于點(diǎn)F,且,則以點(diǎn)C、D、E、F為頂點(diǎn)的四邊形能否為平行四邊形?若能,求出點(diǎn)E的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
(3)若過(guò)點(diǎn)A作AG⊥軸,交直線于點(diǎn)G,連OG、BE,試證明OG∥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象經(jīng)過(guò)(,0)和(,0)兩點(diǎn).
(1)求此二次函數(shù)的表達(dá)式.
(2)直接寫出當(dāng)<x<1時(shí),y的取值范圍.
(3)將一次函數(shù) y=(1-m)x+2的圖象向下平移m個(gè)單位后,與二次函數(shù)圖象交點(diǎn)的橫坐標(biāo)分別是a和b,其中a<2<b,試求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案