【題目】如圖,拋物線y=ax2+b與x軸交于點A、B,且A點的坐標為(1,0),與y軸交于點C(0,1)
(1)求拋物線的解析式,并求出點B坐標;
(2)過點B作BD∥CA交拋物線于點D,連接BC、CA、AD,求四邊形ABCD的周長;(結(jié)果保留根號)
(3)在x軸上方的拋物線上是否存在點P,過點P作PE垂直于x軸,垂足為點E,使以B、P、E為頂點的三角形與△CBD相似?若存在請求出P點的坐標;若不存在,請說明理由.
1)y=-x2+1,B(-1,0).(2)5+,4.(3)點P的坐標為(, ).
【解析】試題分析:(1)利用待定系數(shù)法求出拋物線的解析式,點B坐標可由對稱性質(zhì)得到,或令y=0,由解析式得到;
(2)關(guān)鍵是求出點D的坐標,然后利用勾股定理分別求出四邊形ABCD四個邊的長度;
(3)本問為存在型問題.可以先假設(shè)存在,然后按照題意條件求點P的坐標,如果能求出則點P存在,否則不存在.注意三角形相似有兩種情形,需要分類討論.
試題解析:(1)∵點A(1,0)和點C(0,1)在拋物線y=ax2+b上,
∴,
解得:a=-1,b=1,
∴拋物線的解析式為:y=-x2+1,
拋物線的對稱軸為y軸,則點B與點A(1,0)關(guān)于y軸對稱,
∴B(-1,0).
(2)設(shè)過點A(1,0),C(0,1)的直線解析式為y=kx+b,可得:
,
解得k=-1,b=1,∴y=-x+1.
∵BD∥CA,
∴可設(shè)直線BD的解析式為y=-x+n,
∵點B(-1,0)在直線BD上,∴0=1+n,得n=-1,
∴直線BD的解析式為:y=-x-1.
將y=-x-1代入拋物線的解析式,得:-x-1=-x2+1,解得:x1=2,x2=-1,
∵B點橫坐標為-1,則D點橫坐標為2,
D點縱坐標為y=-2-1=-3,
∴D點坐標為(2,-3).
如圖①所示,過點D作DN⊥x軸于點N,則DN=3,AN=1,BN=3,
在Rt△BDN中,BN=DN=3,由勾股定理得:BD=3;
在Rt△ADN中,DN=3,AN=1,由勾股定理得:AD=;
又OA=OB=OC=1,OC⊥AB,由勾股定理得:AC=BC=;
∴四邊形ABCD的周長為:AC+BC+BD+AD=++3+=5+.
∵AB=2,OC=1,DN=3
∴四邊形ABCD的面積為:
(3)假設(shè)存在這樣的點P,則△BPE與△CBD相似有兩種情形:(I)若△EPB∽△BDC,如圖②所示,
則有,
即,∴PE=3BE.
設(shè)OE=m(m>0),則E(-m,0),BE=1-m,PE=3BE=3-3m,
∴點P的坐標為(-m,3-3m).
∵點P在拋物線y=-x2+1上,
∴3-3m=-(-m)2+1,解得m=1或m=2,
當(dāng)m=1時,點E與點B重合,故舍去;當(dāng)m=2時,點E在OB左側(cè),點P在x軸下方,不符合題意,故舍去.
因此,此種情況不存在;
(II)若△EBP∽△BDC,如圖③所示,
則有,
即,
∴BE=3PE.
設(shè)OE=m(m>0),則E(m,0),BE=1+m,PE=BE=(1+m)=+m,
∴點P的坐標為(m, +m).
∵點P在拋物線y=-x2+1上,
∴+m=-(m)2+1,解得m=-1或m=,
∵m>0,故m=-1舍去,∴m=,
點P的縱坐標為: +m=+×=,
∴點P的坐標為(, ).
綜上所述,存在點P,使以B、P、E為頂點的三角形與△CBD相似,點P的坐標為(, ).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,CA=CB,在△AED中, DA=DE,點D、E分別在CA、AB上.
(1)如圖①,若∠ACB=∠ADE=90°,則CD與BE的數(shù)量關(guān)系是 ;
(2)若∠ACB=∠ADE=120°,將△AED繞點A旋轉(zhuǎn)至如圖②所示的位置,求CD與BE的數(shù)量關(guān)系;
(3)若∠ACB=∠ADE=2α(0°< α < 90°),將△AED繞點A旋轉(zhuǎn)至如圖③所示的位置,探究線段CD與BE的數(shù)量關(guān)系,并加以證明(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組利用三角形相似測量學(xué)校旗桿的高度.測得身高為1.6米小明同學(xué)在陽光下的影長為1米,此時測得旗桿的影長為9米.則學(xué)校旗桿的高度是( )
A.9米B.14.4米C.16米D.13.4米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標系xOy中,點A在x軸負半軸上,點B在y軸正半軸上,OA=OB,函數(shù)的圖象與線段AB交于M點,且AM=BM.
(1)求點M的坐標;
(2)求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P(-2,1)關(guān)于x軸的對稱點的坐標為( )
A. (2,1) B. (-2,-1)
C. (2,-1) D. (1,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“從布袋中取出一個紅球的概率為0”,這句話的含義是( 。
A.布袋中紅球很少B.布袋中全是紅球
C.布袋中沒有紅球D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與直線CD交于點O,OE⊥AB,∠DOF=90°,OB平分∠DOG,有下列結(jié)論:①當(dāng)∠AOF=60°時,∠DOE=60°;②OD為∠EOG的平分線;③與∠BOD相等的角有三個;④∠COG=∠AOB-2∠EOF.其中正確的結(jié)論是________(填序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com